Privacy-Preserving Protocols for Secure and Reliable Data Aggregationin IoT-Enabled Smart Metering Systems

Show simple item record

dc.contributor.author Tonyali, Samet
dc.contributor.author Saputro, Nico
dc.contributor.author Akkayaa, Kemal
dc.contributor.author Uluagac, Selcuk A.
dc.contributor.author Nojoumianb, Mehrdad
dc.date.accessioned 2023-04-03T07:28:04Z
dc.date.available 2023-04-03T07:28:04Z
dc.date.issued 2018
dc.identifier.issn 0167-739X
dc.identifier.other artsc628
dc.identifier.uri http://hdl.handle.net/123456789/14746
dc.description FUTURE GENERATION COMPUTER SYSTEMS JOURNAL; Vol.78 No. part 2 Januari 2018. p. 547-557 en_US
dc.description.abstract As the Internet of Things (IoT) gets more pervasive, its areas of usage expands. Smart Metering systems is such an IoT-enabled technology that enables convenient and high frequency data collection compared to existing metering systems. However, such a frequent data collection puts the consumers’ privacy in risk as it helps expose the consumers’ daily habits. Secure in-network data aggregation can be used to both preserve consumers’ privacy and reduce the packet traffic due to high frequency metering data. The privacy can be provided by performing the aggregation on concealed metering data. Fully homomorphic encryption (FHE) and secure multiparty computation (secure MPC) are the systems that enable performing multiple operations on concealed data. However, both FHE and secure MPC systems have some overhead in terms of data size or message complexity. The overhead is compounded in the IoT-enabled networks such as Smart Grid (SG) Advanced Metering Infrastructure (AMI). In this paper, we propose new protocols to adapt FHE and secure MPC to be deployed in SG AMI networks that are formed using wireless mesh networks. The proposed protocols conceal the smart meters’ (SMs) reading data by encrypting it (FHE) or computing its shares on a randomly generated polynomial (secure MPC). The encrypted data/computed shares are aggregated at some certain aggregator SM(s) up to the gateway of the network in a hierarchical manner without revealing the readings’ actual value. To assess their performance, we conducted extensive experiments using the ns-3 network simulator. The simulation results indicate that the secure MPC-based protocol can be a viable privacy-preserving data aggregation mechanism since it not only reduces the overhead with respect to FHE but also almost matches the performance of the Paillier cryptosystem when it is used within a proper sized AMI network. en_US
dc.language.iso Indonesia en_US
dc.publisher Elsevier en_US
dc.subject INTERNET OF THINGS en_US
dc.subject PRIVACY-PRESERVING PROTOCOLS en_US
dc.subject RELIABLE DATA AGGREGATION en_US
dc.subject SECURE MULTIPARTY COMPUTATION en_US
dc.subject FULLY HOMOMORPHIC ENCRYPTION en_US
dc.subject SMART METERING SYSTEMS en_US
dc.title Privacy-Preserving Protocols for Secure and Reliable Data Aggregationin IoT-Enabled Smart Metering Systems en_US
dc.type Journal Articles en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UNPAR-IR


Advanced Search

Browse

My Account