Abstract:
Analysis of social data is frequently done using aggregate-level data. There may not be a direct interest in spatial relationships in the data, but the presence of spatial interdependence may still need to be taken into account. This article explores the aggregation effect from a spatial perspective by assuming nonzero covariance for individual data from two different groups. We investigate the bias associated with aggregate-level data for semivariogram analysis. We show that the bias mainly arises from the average of the semivariogram within the groups. It is also shown how aggregated-level data may be used to estimate parameters of an individual-level semivariogram model. A nonlinear regression method is proposed to carry out this estimation procedure and a simulation is done to clarify the results.