BAB V

KESIMPULAN DAN SARAN

Setelah melakukan observasi, evaluasi, dan analisis terhadap konstruksi dan pengolahan material peti kemas yang berpengaruh terhadap kondisi panas di ruangan Hotel Chara, maka dapat di ambil beberapa hasil observasi dan evaluasi penelitan antara lain:

5.1 Konstruksi dan Pengolahan – Insulasi, meliputi:

No.	Kajian	Aspek	Memenuhi/Cukup/Tidak Memenuhi
1	Insulasi	Pemilihan material	
		insulator peti kemas	Cukup Memenuhi
			(nilai-R material tergolong menengah)
		Tatanan dan	
		ketebalan insulasi	Tidak Memenuhi
			(Terlalu tipis (3-5cm), menurut rekomendasi
			15 cm)

Bahasan pertama adalah konstruksi dan pengolahan dikaji dari aspek Insulasi, dari hasil pengamatan, pemilihan material peti kemas masih dapat di optimalkan. *Glasswool* merupakan material insulator yang memiliki nilai-R tingkat menengah (3.1-4), meningkatkan nilai-R dengan memilih material insulator yang lain akan lebih mereduksi panas yang masuk ke dalam ruangan.

Berikut adalah beberapa material yang memiliki nilai *Resist* yang lebih tinggi dibandingkan material insulator yang di gunakan di Hotel Chara:

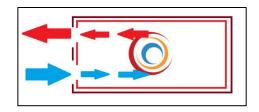
Autoclaved Aerated Concrete	1.05
Urea Terpolymer Foam	4.48
Rigid Fiberglass (> 4lbft3)	4.00
Expanded Polystyrene (beadboard)	4.00
Extruded Polystyrene	5.00
Polyurethane (foamed-in-place)	6.25
Polyisocyanurate (foil-faced)	7.20

Tabel 5.1: Konstruksi Insulasi Atap, Dinding, dan Lantai (Sumber: http://dimensiinterior.petra.ac.id)

Namun banyak pertimbangan yang mempengaruhi pemilihan material insulator di Hotel Chara, salah satunya adalah biaya (cost) dan metode instalasi yang belum familiar di Indonesia. Material dengan nilai-R yang tinggi biasanya memiliki harga yang cukup tinggi di pasaran, sedangkan alasan owner memilih menggunakan material peti kemas adalah ingin menekan biaya pembangunan, oleh sebab itu, alternatif yang digunakan adalah dengan mengaplikasikan plywood sebagai finishing, yang cukup memiliki nilai-R yang tergolong baik sebagai material finishing. Hal ini berpengaruh pada efisiensi biaya konstruksi dan finishing dapat di optimalkan (insulasi terpenuhi, finishing juga terpenuhi).

Selain itu, pemilihan material juga mempertimbangkan aspek lain, seperti kenyamanan audial. Tekstur dan sifat *Glasswool* cenderung meredam suara bising. Mengingat fungsi bangunan adalah Hotel, yang di tuntut tinggi tingkat keprivasiannya, maka material *Glasswool* menjadi pilihan yang dianggap baik untuk mengakomodasi kebutuhan insulasi di Hotel Chara.

Mengenai tatanan ketebalan insulasi di Hotel Chara juga dinilai masih dapat dioptimalkan, ketebalan insulasi yang dinilai tergolong tipis sehingga menghasilkan *timelag* yang cukup rendah (4jam), sebenarnya hal tersebut merupakan kelalaian konstruksi dari tenaga kerja yang digunakan saat pembangunan. Kurangnya pengetahuan akan penyikapan terhadap *heat avoidance* mengakibatkan kurang optimalnya tatanan insulasi yang diaplikasikan. Selain itu, perancang pun mempertimbangkan, jika lapisan insulasi terlalu tebal, maka akan membuat ruangan yang di dapat tidak memenuhi standar dan keinginan owner. Oleh sebab itu, untuk menyeimbangkan kebutuhan dan keinginan dari berbagai pihak, maka lapisan insulasi yang digunakan tidak dioptimalkan.


5.2 Konstruksi dan Pengolahan – Permukaan dan Fasad Peti Kemas, meliputi:

No.	Kajian	Aspek	Memenuhi/Cukup/Tidak
			Memenuhi
2.	Permukaan	Letak pelubangan peti kemas	
	dan Fasad	untuk jendela, ventilasi, dan	Tidak Memenuhi
	Peti Kemas	pintu	(Seharusnya di atas)
		Pemilihan material pelapis	
		permukaan peti kemas	Memenuhi
			(Sudah baik, nilai albedo
			cukup)
		Pemanfaatan vegetasi dan	
		buffer	Tidak Memenuhi
			(Tanaman tidak berfunsi
			sebagai naungan)

Upaya menghindari panas pada konstruksi dan pengolahan terhadap permukaan dan fasad peti kemas Hotel Chara dinilai sangat minim. Pertama, mengenai peletakan lubang ventilasi pada Hotel Chara yang tergolong buruk, mungkin perancang mengasumsikan bahwa ruangan memakai AC, sehingga tidak diperlukan lagi lubang untuk ventilasi.

Padahal, menurut *officeboy* hotel, jendela dan ventilasi kamar seringkali dibuka saat kamar tidak digunakan, hal ini dilakukan untuk menerapkan sistem ventilasi alami yang dapat menjaga keadaan kamar dari kondisi lembab dan jamur.

Mengingat material peti kemas yang cenderung bereaksi terhadap panas dan mengakibatkan kondensasi di dalam ruangan, ventilasi yang buruk akan mengakibatkan sistem aliran *in-let* dan *out-let* udara menjadi kurang optimal, sehingga dalam hal ini konstruksi dan pengolahan masih sangat dapat di optimalkan agar kondisi kamar Hotel Chara saat tidak digunakan tidak lembab dan berjamur.

Gambar 5.1: Ilustrasi in-let dan out-let Udara

Jenis material kaca yang menjadi jendela adalah kaca bening biasa. Namun perancang mengakalinya dengan melapisi kaca dengan lapisan kaca film untuk mereduksi intensitas cahaya matahari yang masuk ke dalam ruangan.

Pemilihan material pelapis permukaan luar dan dalam Hotel Chara, dinilai cukup baik dan memenuhi standar yang disarankan. Pemilihan jenis pelapis yang digunakan, warna yang di terapkan, dan jenis pelapis tambahan yang mengoptimalkan kondisi lingkungan terlihat sangat diperhitungkan. Penggunaan cat mobil sebagai pelapis permukaan eksterior dinilai cukup cerdas, mengingat cat mobil memang di desain untuk menanggulagi paparan panas yang terus menerus dan harganya pun tergolong murah, pemilihan warna yang cenderung gelap, namun bisa merefleksikan panas juga cukup baik sehingga panas tidak terserap sepenuhnya pada saat paparan sinar matahari sedang berlangsung.

Namun, penggunaan vegetasi dan *buffer* untuk menaungi fasad bangunan tidak di aplikasikan. Terlihat upaya menggunakan tanaman Lee Kwan Yew pada fasad bangunan, namun hal tersebut dinilai sia-sia karena tidak menaungi bagian permukaan peti kemas Hotel Chara. Desain fasad juga tidak menerapkan kisi-kisi yang dapat mereduksi intensitas sinar matahari yang masuk ke dalam ruangan.

Gambar 5.2: Contoh Penerapan Kisi-kisi pada Fasad Bangunan (Sumber: google.co.id/fasad_vegetasi)

5.3 Konstruksi dan Pengolahan – Peletakan dan Penyusunan Unit Peti Kemas, meliputi:

No.	Kajian	Aspek	Memenuhi/Cukup/Tidak Memenuhi
3	Peletakan dan	Metode	
	Penyusunan	peletakan dan	
	Unit Peti	penyusunan peti	Memenuhi
	Kemas	kemas	(Sudah disediakan celah untuk udara)
		Penyikapan	
		terhadap	
		lingkungan	Memenuhi
		sinar matahari	(Penyikapan terhadap sinar matahari dan
		arah aliran udara	penerapan stack effect perlu di apresiasi)

Peletakan dan penyusunan massa peti kemas di Hotel Chara dinilai cukup baik. Penyusunan antar unit peti kemas di Hotel Chara diberi celah sebesar 15-20cm untuk mencegah rambatan panas yang berasal dari radiasi sinar matahari antar peti kemas, hal ini juga dapat berperan juga seperti insulasi udara. Namun, jika dilihat dari intensitas dan frekuensi paparan sinar matahari di Kota Bandung, pemberian celah antar unit peti kemas dapat berdampak buruk karena dapat menjadi perangkap bagi udara panas yang malah membuat ruangan menjadi panas. Oleh sebab itu, perlunya pertimbangan yang lebih lanjut untuk menyikapi hal ini.

Orientasi dan penyikapan massa bangunan Hotel Chara terhadap sinar matahari yang mengacu pada arah Timur dan Barat disikapi dengan SPSM yang cukup besar, hal ini dinilai cukup baik mengingat intensitas dan frekuensi paparan sinar matahari di Kota Bandung yang cukup tinggi walaupun dalam hasil simulasi Ecotect menunjukkan SPSM tidak dapat "membentengi" permukaan fasad kaca bangunan secara optimal (hanya berkisar 60%). SPSM di Hotel Chara juga berfungsi sebagai *balcony* yang tidak dapat di akses, sehingga selain untuk menyikapi lingkungan, SPSM juga menjadi elemen estetika yang mempercantik fasad Hotel Chara.

Penerapan tatanan peletakan unit peti kemas yang menciptakan *stack effect* juga dinilai cukup baik. Perancang mampu untuk menciptakan pergerakan udara di dalam ruangan tanpa harus menghabiskan biaya untuk energi tak terbarukan. Hal ini cukup membantu untuk mereduksi jumlah panas yang ada di dalam ruangan Hotel Chara yang secara tidak langsung berdampak pada kondisi di dalam kamar Hotel.

5.4 Kesimpulan Umum Penelitian

Upaya yang dilakukan perancang dalam menanggulangi panas pada rancangan Hotel Chara dinilai cukup baik. Terlihat beberapa upaya terkait konstruksi dan pengolahan pada material peti kemas yang dilakukan untuk mereduksi panas. Perancang juga mampu menekan biaya dari konstruksi dan pengolahan peti kemas dengan cara menerapkan desain pasif pada desain keseluruhan bangunan.

Namun, masih banyak aspek yang masih dapat di optimalkan untuk lebih meminimalisir panas dan mengefisinsikan energi operasional pendingin ruangan Hotel Chara, seperti mengoptimalkan ketebalan sehingga meningkatkan nilai *time lag* dari rambatan panas, kemiringan SPSM, dan konstruksi khusus yang memberikan celah untuk udara luar dapat masuk sehingga perencanaan *stack effect* dapat terlaksana secara maksimal. Dari hasil evaluasi dan observasi di lapangan, dapat disimpulkan bahwa yang menjadi faktor kurang optimalnya konstruksi dan pengolahan material peti kemas di Hotel Chara adalah tingkat pengetahuan akan konstruksi dan pengolahan peti kemas yang tergolong baru di kancah arsitektur Indonesia dan perlunya pertimbangan efisiensi biaya yang dilakukan perancang terhadap keinginan *owner* Hotel Chara.

5.5 Saran Penelitian

5.5.1 Saran Aplikatif untuk Pengelola Hotel Chara

Saran-saran berikut ini merupakan saran aplikatif yang ditujukan kepada pihak pengelola Hotel Chara berkaitan dengan konstruksi dan pengolahan material peti kemas agar kondisi termal di dalam kamar hotel menjadi lebih terkendali sehingga diharapkan dapat menurunkan konsumsi energi listrik untuk pendingin ruangan.

No.	Kajian	Aspek	Saran
1	Insulasi	Pemilihan material	Jika memungkinkan, dalam renovasi
		insulator peti kemas	pemugaran hotel berikutnya dalam
			dilakukan pergantian material insulasi yang
			memiliki nilai-R lebih tinggi di bandingkan
			glasswool.
		Tatanan dan	Jika memungkinkan, menambah ketebalan
		ketebalan insulasi	insulasi di dinding, plafond, dan lantai. Hal
			ini bertujuan untuk meningkatkan time lag
			sehingga rambatan panas ke dalam ruangan
			dapat diminimalisir.
			(rujukan penambahan 10 cm)

2. Konstruksi dan Pengolahan – Permukaan dan Fasad Peti Kemas

No.	Kajian	Aspek	Saran
2	Permukaan	Letak pelubangan peti kemas	Pindahkan ventilasi ke
	dan Fasad	untuk jendela, ventilasi, dan	jendela sebelah atas, selain
	Peti Kemas	pintu	alasan keamanan, hal ini
			juga dapat mengeliminasi
			udara panas yang
			terperangkap.

Pem	ilihan material	pelapis	Cukup baik. Jika
pern	nukaan peti kemas	S	memungkinkan, lakukan
			perawatan secara rutin.
Pem	anfaatan veget	asi dan	Berikan perhatian terhadap
buffe	er		tanaman Lee Kwan Yew
			sehingga bisa berkontribusi
			terhadap kondisi termal di
			dalam kamar.
			Ganti material Railing
			dengan bahan yang massif
			sehingga dapat menjadi
			buffer yang baik.

3.Konstruksi dan Pengolahan – Peletakan dan Penyusunan Unit Peti Kemas

No.	Kajian	Aspek	Saran
3	Peletakan dan	Metode	Cukup baik, hanya perlu dipikirkan
	Penyusunan	peletakan dan	kembali tentang celah antar peti kemas di
	Unit Peti	penyusunan peti	lingkungan tropis Kota Bandung dengan
	Kemas	kemas	simulasi yang lebih akurat
		Penyikapan	Jika memungkinkan, beri akses udara di
		terhadap	luar untuk masuk kedalam (bisa dengan
		lingkungan	lubang angin) agar stack effect yang
		sinar matahari	sudah di rencanakan dapat berjalan
		arah aliran udara	dengan maksimal.

5.5.2 Saran untuk Penelitian Lanjutan

Saran-saran berikut ini ditujukan kepada para peneliti yang ingin melakukan penelitian mengenai konstruksi dan pengolahan peti kemas. Saran-saran yang diberikan dibagi dalam 3 aspek, yaitu:

1. Konstruksi dan Pengolahan – Peletakan dan Penyusunan Unit Peti Kemas

No.	Kajian	Aspek	Saran
1	Insulasi	Pemilihan material	Diharapkan peneliti dapat memperkaya
		insulator peti kemas	wawasan mengenai material-material
			insulator dan efek samping dari penggunaan
			material tersebut.
		Tatanan dan	Akan lebih baik jika peneliti dapat
		ketebalan insulasi	mengukur time lag langsung di lapangan,
			sebab penggunaan software cenderung
			kurang optimal dalam menentukan nilai
			time lag suatu material.

2. Konstruksi dan Pengolahan – Permukaan dan Fasad Peti Kemas

No.	Kajian	Aspek	Saran
2	Permukaan	Letak pelubangan peti kemas	Pada penelitian ini, simulasi
	dan Fasad	untuk jendela, ventilasi, dan	pergerakan udara di dalam
	Peti Kemas	pintu	ruangan tidak sempat
			tersimulasikan. Oleh sebab
			itu, peneliti selanjutnya
			dapat mencoba simulasi
			pergerakan udara di dalam
			ruangan dengan software
			tertentu
		Pemilihan material pelapis	Cukup baik

	permukaan peti kemas			
	Pemanfaatan	vegetasi	dan	Peneliti dapat memperdalam
	buffer			mengenai simulasi mengenai
				pergerakan matahari dan
				efektifitas buffer yang belum
				tercantum dalam penelitian
				ini.

${\bf 3. Konstruksi\ dan\ Pengolahan-Peletakan\ dan\ Penyusunan\ Unit\ Peti\ Kemas}$

No.	Kajian	Aspek	Saran
3	Peletakan dan	Metode	Cukup baik, hanya perlu dipikirkan
	Penyusunan	peletakan dan	kembali tentang celah antar peti kemas di
	Unit Peti	penyusunan peti	lingkungan tropis Kota Bandung dengan
	Kemas	kemas	simulasi yang lebih akurat
		Penyikapan	Diperlukannya pengetahuan yang lebih
		terhadap	mendalam mengenai sifat sifat
		lingkungan	pergerakan dan cahaya matahari dari
		sinar matahari	orientasi massa bangunan.
		arah aliran udara	Peneliti selanjutnya juga bisa menerapkan
			simulasi pergerakan udara dalam skala
			yang besar yang mempengaruhi massa
			bangunan secara keseluruhan.

DAFTAR PUSTAKA

Buku:

- [1] **Kotnik**, J. (2008). *Container Architecture*: This Book Contains 6441 Containers. Barcelona.
- [2] Lippsmeier, George. (1997). Bangunan Tropis, Erlangga, Jakarta.
- [3] **Woods**, Tom. (2015). *How to Build a Shipping Container Home*.containerhomeplans.org.

Jurnal:

- [4] **Ashish**, Deepankar, P.K Latha, Y. Darshana. (2015). *Role of Building Material in Thermal Comfort in Tropical Climate*. Kolkata, India.
- [5] **Elrayies**, Ghada Mohammad. (2017). *Thermal Performance Assessment of Shipping Container Architecture in Hot and Humid Climates*. Vol.7 (2017) No. 4.
- [6] **Susanto**, Lianggono. (2014). Eksplorasi Terapan Refunction Container Menjadi Ruang-ruang Baca Taman Amin di Batu, Jawa Timur. Jakarta. Vol.12, No.1.

Artikel:

- [7] **Woods**, Tom. 2016. *How do I Keep My Container Home Cool*. https://www.containerhomeplans.org/2015/02/how-do-i-keep-my-container-home-cool/.
- [8] **Woods**, Tom. 2016. *How Should You Ventilate Your Shipping Container Home*. http://www.containerhomeplans.org/2015/04/how-should-youventilate-your-shipping-container-home/.

Situs Internet:

- [9]https://www.academia.edu/16369405/Role_of_building_material_in_thermal_comfort_in_t ropical_climates_A_review
- $[10] \ http://arsitekturdanlingkungan.wg.ugm.ac.id/2015/11/20/pengaturan-penghawaan-dan-pencahayaan-pada-bangunan/$
- [11] https://www.containerhomeplans.org
- [12] https://greenzains.wordpress.com/2011/11/10/software-ecotect-gratis-untuk-mahasiswa/
- [13]http://www.weatherbase.com/weather/weather.php3?s=18769&cityname=Bandung-Indonesia
- [14] https://www.researchgate.net

- [15]http://www.yourhome.gov.au/passive-design/orientation
- [16] http://www.sitoho.com/eshop/category.php?id_category=94
- [17] http://www.penguji.com/pengertian-anemometer-dan-jenisnya/738
- [18]http://arsitekturdanlingkungan.wg.ugm.ac.id/2015/11/20/pengaturan-penghawaan-dan-pencahayaan-pada-bangunan/
- [19] http://bibitbunga.com/tanaman-lee-kwan-yew-curtain-creeper/

Diktat Perkuliahan Universitas:

[20] **Sutanto**, E. B. Handoko, Amirani Ritva Santoso, Mira Dewi Pangestu. Bandung 2014. *Fisika Bangunan, Diktat Kumpulan Materi Kuliah*. Prodi Arsitektur Universitas Parahyangan.