MODEL PERHITUNGAN BIAYA BANGUNAN GEDUNG DENGAN METODE HARGA SATUAN

MAKALAH

Ali Maliki

692.5 MAL m

FAKULTAS TEKNIK
UNIVERSITAS KATOLIK PARAHYANGAN
BANDUNG
FEBRUARI 1996

85227 RIPTS 8.10.02.

DAFTAR ISI

D.	4FT/	AR ISI	i
1.	PEN	IDAHULUAN	1
2.	TUJ	UAN PENULISAN	2
3.	BIA	YA LANGSUNG DAN BIAYA TIDAK LANGSUNG	2
	3.1	Biaya Langsung	2
		3.1.1 Biaya Pekerjaan Struktural	3
		3.1.2 Biaya Pekerjaan Nonstruktural	4
		3.1.3 Biaya Pekerjaan Mechanical Electrical	5
		3.1.4 Klasifikasi Biaya Peralatan	6
	3.2	Biaya Tidak Langsung	7
		3.2.1 Biaya Tidak Langsung yang Dapat Dinyatakan Secara	
		Eksplisit	. 8
		3.2.2 Biaya Tidak Langsung yang Dapat Dinyatakan Secara	
		Eksplisit	9
	3.3	Keterkaitan Biaya Proyek Konstruksi dengan Harga Pasar dan	•
		Faktor-faktor Pengaruh Implist Lainnya	10
4.	ST	JDI KASUS	11
	4.1	Gambaran Umum	11
	4.2	Struktur Rincian Lingkup Kerja	12
	4.3	Perincian Volume Pekerjaan dan Harga Satuan dalam Bill of	-
		Quantity	12
	4.4	Analisis Harga Satuan dengan BOW	13
		4.4.1 Pekerjaan Pondasi	15
		4.4.2 Pekerjaan Poer	17
		4.4.3 Pekerjaan Beton	18
		4.4.4 Pekerjaan Baja	19
	4.5	Analisis dan Pembahasan Studi Kasus Bangunan GSG Yayasan	
		Suryakanti	20
		4.5.1 Pekerjaan Substructure	21

4.5.2 Pekerjaan Beton	24
4.5.2 Pekerjaan Baja	28
4.5.4 Koreksi Terhadap Analisis Harga Satuan dengan Metode	
. BOW	28
5. PENUTUP	30
6. DAFTAR PUSTAKA	32
STRUKTUR RINCIAN LINGKUP PEKERJAAN	
BILL OF QUANTITY GEDUNG SERBAGUNA YAYASAN SURYA-	
KANTI, JL. CIMUNCANG BANDUNG	
DAFTAR ANALISA PEKERJAAN STRUKTUR BETON (BOW)	

MODEL PERHITUNGAN BIAYA BANGUNAN GEDUNG DENGAN METODE HARGA SATUAN

Ali Maliki

ABSTRAK

Kegiatan estimasi biaya dalam proyek konstruksi penting dilakukan untuk memperoleh total biaya proyek yang dibutuhkan. Studi kasus yang digunakan adalah bangunan gedung serbaguna Yayasan Suryakanti, Jln. Cimuncang, Bandung. Kasus ini dipilih karena mewakili pekerjaan struktural baik beton maupun baja. Perhitungan yang dilakukan merupakan perhitungan harga satuan rata-rata untuk biaya langsung yang memiliki pengaruh besar dalam keseluruhan biaya. Sebagai pembanding adalah beberapa perusahaan konstruksi di Jakarta, Indramayu dan Bandung.

Kesimpulan yang diperoleh adalah bahwa analisis harga satuan dengan metode BOW masih dapat digunakan untuk pekerjaan yang dilakukan dengan cara konvensional. Metode BOW tidak tepat digunakan (1) untuk pekerjaan yang menggunakan teknologi modern dan (2) untuk pekerjaan balok serta pelat beton karena mahalnya harga satuan bekisting dan perancah. Analisis harga satuan untuk baja (Bina Marga) juga masih dapat digunakan. Kedua metode tersebut perlu dikoreksi sesuai dengan kondisi masing-masing proyek. Hasilnya dapat digunakan konsultan dalam menentukan plafond budget untuk estimasi biaya wajar (fair-cost estimate) bagi pemilik. Dengan demikian, kontraktor masih dapat memperoleh keuntungan yang wajar, tetapi harga pasar yang berlaku dan persaingan dalam mekanisme tender akan membentuk penawaran terendah yang masih dapat dipertanggungjawabkan (the lowest responsible bid).

1. PENDAHULUAN

Analisis harga satuan biasanya terdiri dari biaya untuk material, upah dan peralatan. Pada kenyataannya, perlu dilakukan perhitungan yang lebih rinci agar diperoleh hasil yang lebih akurat, yang di dalamnya termasuk biaya yang secara implisit (misalnya inflasi, perubahan harga, harga pasar dan tingkat suku bunga) dimasukkan ke dalam biaya material, upah dan peralatan. Oleh karena itu, di dalam makalah ini, penulis juga sedikit mengupas masalah faktor-faktor implisit

agar diperoleh perhitungan estimasi yang lebih akurat. Perhitungan estimasi dilakukan berdasarkan pada spesifikasi teknis dan syarat-syarat pekerjaan yang telah ditentukan. Struktur Rincian Lingkup Kerja sebagai acuan pembagian paket pekerjaan terkecil diuraikan secara umum kemudian dilakukan analisis harga satuan bagi masing-masing paket pekerjaan.

Biaya bangunan gedung terdiri dari biaya langsung dan biaya tidak langsung. Biaya langsung adalah biaya yang digunakan untuk segala sesuatu yang akan menjadi komponen permanen hasil akhir proyek, sedangkan biaya tidak langsung adalah pengeluaran untuk pengadaan bagian proyek yang tidak akan menjadi komponen permanen tetapi tetap diperlukan dalam rangka proses pembangunan proyek [11].

2. TUJUAN PENULISAN

Tujuan penulisan makalah ini adalah untuk mempelajari dan menggambarkan perhitungan estimasi biaya langsung proyek bangunan gedung yang menggunakan metode analisis harga satuan (BOW) dan membandingkannya dengan penawaran nyata di lapangan yang menyisipkan faktor-faktor implisit lain yang perlu diperhitungkan terhadap estimasi dengan acuan SRK.

Makalah ini dimaksudkan untuk memperoleh cara estimasi biaya proyek bangunan gedung dengan metode harga satuan agar hasilnya dapat lebih akurat dan tidak menyimpang jauh dari kenyataan. Selain itu, makalah ini dimaksudkan untuk membandingkan antara hasil estimasi berdasarkan teori dengan kenyataan di lapangan.

3. BIAYA LANGSUNG DAN BIAYA TIDAK LANGSUNG

3.1 Biaya Langsung

Biaya langsung adalah biaya yang digunakan untuk segala sesuatu yang akan menjadi komponen permanen hasil akhir proyek

Biaya langsung dalam penelitian ini, terdiri dari pekerjaan struktural dan pekerjaan non struktural yang biasanya memerlukan biaya yang besar. Pekerjaan-pekerjaan tersebut diuraikan dalam bentuk SRK sehingga menjadi paket-paket kerja kecil yang dapat dikelola sebagai satuan unit kerja.

1. Pekerjaan struktural, antara lain:

- a. Bagian bawah struktur (*substructure*): pondasi telapak, pondasi batu kali, pondasi *strauss*, pondasi sumuran, pondasi tiang pancang, dan *bor pile*.
- b. Bagian atas struktur (superstructure/upperstructure): struktur beton bertulang dan struktur baja.

2. Pekerjaan non struktural

Biaya pekerjaan non struktural yang dimaksud adalah biaya pekerjaan selain pekerjaan struktur termasuk pekerjaan arsitektural/finishing, antara lain:

- a. Kusen
- Ъ. Lantai
- 3. Pekerjaan mechanical electrical atau sering disingkat sebagai M/E, antara lain:
 - a. Pemipaan (plumbing)
 - b. Elektrikal (electrical)
 - c. Air Conditioner/AC, termasuk di dalamnya pekerjaan untuk Air Handling Unit/AHU, mesin AC, ducting dan sebagainya.

3.1.1 Biaya Pekerjaan Struktural

Bangunan secara garis besar terdiri bangunan struktural, bangunan nonstruktural dan pelengkap yang salah satunya merupakan pekerjaan M/E seperti telah diuraikan pada subbab terdahulu. Bangunan struktural yang akan dibahas di sini adalah bagian bawah bangunan dan bagian atas bangunan.

a. Bagian Bawah Bangunan (Substructure)

Bagian bawah bangunan biasanya merupakan pondasi yang menahan beban yang disalurkan dari bangunan yang berada di atasnya. Secara garis besar pondasi dibagi menjadi dua jenis, yaitu:

- 1) Pondasi dangkal, seperti pondasi telapak dan pondasi batu kali.
- 2) Pondasi dalam, seperti pondasi tiang pancang, pondasi sumuran, pondasi tiang bor/bor pile dan pondasi strauss.
- Bagian Atas Bangunan (Superstructure/Upperstructure)
 Bagian atas dari bangunan biasanya terbuat dari bahan beton bertulang dan baja.

- Struktur beton bertulang (yang masing-masing elemennya terdiri dari pekerjaan beton, tulangan, bekisting dan perancah, jika diperlukan). Untuk mempermudah perhitungan estimasi biaya, dapat dibuat tabel harga satuan untuk masing-masing paket kerja di dalam SRK.
- Struktur baja yang untuk mempermudah perhitungan estimasi biaya, dapat dibuat tabel harga satuan untuk masing-masing paket kerja di dalam SRK.

3.1.2 Biaya Pekerjaan Nonstruktural

Di samping bangunan struktural, bangunan nonstruktural juga memiliki pengaruh yang besar dalam biaya proyek secara keseluruhan. Dalam makalah ini dibahas dua jenis pekerjaan yang berpengaruh besar dalam menentukan estimasi biaya secara keseluruhan, yaitu kusen dan lantai.

a. Kusen

Perhitungan estimasi pekerjaan kusen yang didalamnya termasuk material untuk pabrikasi, upah dan peralatan biasanya secara sederhana dinyatakan dalam ukuran dan panjang kayu yang disesuaikan dengan ukuran pintu dan jendela. Lebar pintu secara umum berkisar antara 0.60 - 1.00 m, sedangkan yang lebarnya lebih dari 1.00 m dipertimbangkan sebagai desain dan pesanan khusus [4]. Pekerjaan kusen dibagi menjadi dua yaitu pekerjaan kasar dan pekerjaan halus.

Pekerjaan kayu biasanya dilakukan dengan satuan m³, tetapi untuk pekerjaan kusen perhitungan dapat dilakukan dengan estimasi per kusen karena umumnya pekerjaan pembuatan kusen dilakukan oleh subkontraktor yang mengerjakan pekerjaan kusen secara khusus.

b. Lantai

Lantai dapat terbuat dari tiga jenis bahan yaitu beton, bondek dan kayu. Masing-masing sistem dan bahan lantai tersebut perlu diberi lapisan penutup yaitu berupa keramik maupun lapisan penutup yang lain seperti marmer, granit dan sebagainya. Pekerjaan keramik dan penutup lantai jenis lainnya merupakan pekerjaan yang perlu mendapat perhatian khusus karena material yang digunakan cenderung memiliki harga yang cukup mahal, terutama pemasangan material yang ukuran, bentuk maupun mutunya memerlukan pesanan khusus.

Pada dasarnya, keramik dan bahan penutup lantai lainnya diletakkan di atas pelekat, baik berupa screed maupun bahan pelekat lainnya seperti lem. Penggunaan bahan pelekat disesuaikan dengan material yang akan dilekatkan kedua permukaannya. Pemasangan natlgrouting dilakukan di antara material penutup lantai. Pembersihan dan pemolesan material penutup lantai dilakukan sesuai dengan kebutuhan, misalnya pemolesan granit akan lebih mahal dibandingkan keramik biasa, jika diperlukan bahan pemoles tambahan agar hasil yang diperoleh lebih baik.

3.1.3 Biaya Pekerjaan Mechanical Electrical

Pekerjaan pemipaan (plumbing), instalasi listrik (M/E) dan HVAC (Heating, Ventilating and Air Conditionong) merupakan pekerjaan yang memiliki pengaruh besar terhadap beban biaya proyek bangunan secara keseluruhan.

Secara umum, ketiga pekerjaan ini memiliki perhitungan dengan sistem yang sama yaitu dengan melakukan perhitungan terhadap biaya yang diperlukan untuk unit alat/instrumen ditambah dengan biaya untuk peralatan, upah pemasangan dan keuntungan serta biaya tak terduga. Untuk pekerjaan-pekerjaan ini sulit dilakukan perhitungan seperti pekerjaan beton yang dapat dihitung harganya berdasarkan harga satuan per m³ atau seperti baja per kg. Oleh karena itu biasanya perhitungan estimasi biaya dilakukan dengan cara menghitung biaya keseluruhan sistem dalam bangunan.

a. Pekerjaan Pemipaan (Plumbing)

Secara umum pekerjaan pemipaan terdiri dari pekerjaan pemipaan untuk air bersih, air kotor, gas dan pemadam kebakaran. Masing-masing pekerjaan memiliki sistem sendiri sesuai dengan kapasitas yang diperlukan. Pekerjaan pemipaan biasanya tidak dihitung seperti menganalisis harga satuan untuk pekerjaan beton atau baja, melainkan dihitung sebagai satu kesatuan dalam bangunan. Beban biaya sangat tergantung dari jenis, kapasitas dan cara instalasi yang dilakukan. Berikut ini digambarkan sistem pekerjaan pemipaan yang sekaligus merupakan SRK dari pekerjaan pemipaan.

b. Pekerjaan Mechanical/Electrical

Yang dimaksud dengan pekerjaan M/E adalah pekerjaan yang berhubungan dengan instalasi listrik dalam bangunan.

Listrik biasanya bersumber dari PLN (Perusahaan Listrik Negara) yang dipasok ke tempat-tempat yang membutuhkan daya listrik. Untuk bangunan gedung hampir semua penggunaan listrik bersumber dari PLN. Di samping penggunaan listrik dari PLN, penggunaan genset sebagai sumber listrik cadangan sering digunakan bila sewaktu-waktu pasokan listrik dari PLN mengalami hambatan. Misalnya untuk bagian-bagian bangunan tertentu seperti ruangan pengendalian komputer diperlukan listrik yang tidak boleh terputus sehingga genset dapat dipakai sebagai sumber listrik cadangan bila terjadi hambatan pasokan listrik dari PLN.

c. Pekerjaan HVAC (Heating, Ventilating and Air Conditioning)

Pekerjaan Air Conditioner/AC merupakan bagian dari pekerjaan HVAC (Heating, Ventilating and Air Conditioning). Dalam subbab ini pembahasan tidak termasuk pembahasan heating karena untuk lokasi di Indonesia jarang digunakan. Pembahasan hanya meliputi sistem pengaturan udara (ventilating) dan AC.

3.1.4 Klasifikasi Biaya Peralatan

Peralatan digunakan dalam konstruksi baik dengan cara beli, sewa maupun leasing. Pada dasarnya biaya peralatan dapat diklasifikasikan sebagai biaya langsung maupun biaya tidak langsung. Klasifikasi atau pembagian biaya ini tergantung dari penggunaan peralatan itu sendiri. Misalnya biaya untuk tower crane, tidak dimasukkan ke dalam biaya langsung pekerjaan beton karena tower crane tersebut tidak hanya digunakan untuk pekerjaan beton saja melainkan juga melayani pekerjaan lain seperti pemindahan material pekerjaan finishing. Dengan adanya penggunaan satu peralatan untuk keperluan berbagai jenis pekerjaan, maka sulit untuk mengklasifikasikan biaya peralatan tersebut ke dalam biaya langsung satu jenis pekerjaan tertentu. Sebaliknya, ada peralatan tertentu yang dimasukkan ke dalam biaya langsung, misalnya peralatan kerja (tools) yang digunakan pekerja dalam instalasi bekisting. Biaya tersebut dimasukkan ke dalam biaya peralatan

bekisting karena benar-benar langsung digunakan untuk instalasi bekisting. Perhitungan biaya peralatan ini biasanya termasuk dalam koefisien-koefisien yang ada dalam analisis harga satuan seperti BOW.

Dalam analisis yang dilakukan dalam penelitian ini, pembagian peralatan dibagi menjadi dua yaitu biaya peralatan yang termasuk biaya langsung dan biaya peralatan yang termasuk biaya tidak langsung.

- a. Biaya peralatan yang termasuk biaya langsung antara lain:
 - Peralatan tukang baik untuk pekerjaan kayu (set carpentry tools) seperti palu. gergaji, kape, dan sebagainya maupun pekerjaan M/E (set M/E tools) seperti tang, obeng dan sebagainya.
 - Peralatan yang langsung digunakan untuk satu jenis pekerjaan, seperti concrete pump, vibrator, power trowel, mesin untuk memotong dan membengkokkan besi (cutting and bending machines), perancah, buket beton (concrete bucket), dan sebagainya.
- b. Biaya peralatan yang termasuk biaya tidak langsung antara lain:
 - Peralatan yang digunakan untuk melayani lebih dari satu jenis pekerjaan seperti genset, main switchboard, main electrical board dan peralatan lain yang digunakan untuk memasok tenaga listrik (power supply), jaringan air maupun penerangan.
 - Peralatan untuk pekerjaan survei dan komunikasi, seperti theodolite, walky talky, auto level, dan sebagainya.
 - Peralatan untuk mengangkut material berbagai jenis pekerjaan, seperti tower crane dan aksesorisnya, truk, forklift, pick up, buket sampah (rubbish bucket) dan sebagainya.

Biaya peralatan tidak terbatas hanya pada yang telah disebutkan di atas. masih ada biaya peralatan lain yang dapat diperhitungkan, baik sebagai biaya langsung maupun biaya tidak langsung.

3.2 Biaya Tidak Langsung

Biaya tidak langsung adalah pengeluaran untuk pengadaan bagian proyek yang tidak akan menjadi komponen permanen tetapi tetap diperlukan dalam rangka proses pembangunan proyek Biaya tidak langsung terdiri dari berbagai macam biaya yang dapat dinyatakan secara eksplisit maupun secara implisit dalam anggaran biaya proyek. Biaya tidak langsung yang dapat dinyatakan secara eksplisit tidak akan menjadi masalah dalam perhitungan anggaran, tetapi biaya tidak langsung yang implisit tentunya harus dapat diperhitungkan. Salah satu cara memperhitungkan biaya implisit ini adalah dengan memasukkannya ke dalam koefisien-koefisien perhitungan biaya langsung. Perhitungan biaya bangunan gedung dengan metode analisis harga satuan inilah yang biasanya digunakan oleh perusahaan konstruksi.

Dalam penelitian ini, perhitungan seperti di atas akan dibandingkan dengan perhitungan analisis harga satuan metode BOW. Dalam perhitungan digunakan urutan-urutan berdasarkan Struktur Rincian Lingkup Kerja yang sesuai dengan kondisi proyek yang bersangkutan yang dibahas dalam subbab berikutnya. Dalam analisis BOW, perhitungan biaya-biaya implisit tidak terlihat dalam koefisien-koefisien bahan maupun upah. Bahkan biaya peralatan pun tidak terlihat secara eksplisit, melainkan diperhitungkan ke dalam upah pekerja.

Langkah-langkah yang dilakukan dalam penelitian ini mengikuti model sebagai berikut:

- Pembuatan Struktur Rincian Lingkup Kerja sesuai dengan proyek yang akan dihitung.
- 2. Perhitungan biaya langsung dengan metode analisis harga satuan (BOW) dan menabelkan hasilnya dalam tabel harga satuan untuk setiap elemen pekerjaan.
- 3. Perhitungan biaya langsung yang diambil dari beberapa proyek dan kontraktor yang berlokasi di Indramayu, Bandung dan Jakarta.
- 4. Membuat tabel perbandingan antara metode BOW dan perhitungan dari beberapa proyek dan kontraktor yang berlokasi di Indramayu, Bandung dan Jakarta.
- Membuat grafik hasil perhitungan perbandingan di atas, menganalisisnya, apakah terjadi perbedaan atau tidak, dan mencari sebab perbedaan atau kesamaannya.

Di bawah ini dipisahkan antara kedua jenis biaya tidak langsung:

3.2.1 Biaya Tidak Langsung yang Dapat Dinyatakan Secara Eksplisit

Biaya tidak langsung yang dapat dinyatakan secara eksplisit antara lain:

1. Biaya pekerjaan persiapan:

- Persiapan instalasi lapangan: jalan masuk, gudang, dan pondasi tower crane.
- Pembangunan bedeng pekerja, direksi kit, termasuk pemasangan aliran listrik (power supply), jaringan air dan penerangan.
- 2. Biaya peralatan, baik dengan cara beli, sewa maupun *leasing*, termasuk biaya pendukung seperti bahan bakar, perawatan, suku cadang, dan operator peralatan.
 - Peralatan untuk pekerjaan yang berhubungan dengan air (water equipment), antara lain pompa air, pipa, tangki air dan tangki bahan bakar.
 - Peralatan untuk pekerjaan yang berhubungan dengan udara (air equipment), antara lain kompresor, pipa, jack hammer, dan drill hammer.
 - Peralatan untuk transportasi, antara lain truk, forklift, dumper, dan van.
 - Peralatan untuk mengangkat (lijting equipment), antara lain tower crane dan aksesorisnya, dan slings.
 - Peralatan untuk pasokan listrik (power supply), antara lain genset, main switchboard, change over, dan auxiliary panels.
- 3. Profit/keuntungan dan pajak.

3.2.2 Biaya Tidak Langsung yang Dinyatakan Secara Implisit

Biaya tidak langsung yang tidak dapat dinyatakan secara eksplisit (biasa dinyatakan secara implisit) antara lain:

- 1. Biaya operasi proyek rutin (running costs) antara lain: biaya kebersihan, foto/video proyek, alat-alat tulis, kertas, tinta printer, tinta plotter, rekening telepon/telefax, biaya pos untuk pengiriman surat/dokumen, pemeliharaan mesin fotocopy beserta tintanya, pemeliharaan AC, biaya keamanan lingkungan, dan biaya untuk audit.
- 2. Biaya untuk gaji karyawan:
 - Gaji untuk staf lapangan, mulai dari pengawas lapangan sampai manajer proyek.
 - Gaji untuk staf administrasi, mulai dari staf pengurus keuangan, sekretaris, sampai bagian umum.

- Gaji untuk staf pendukung, seperti office boy, petugas kebersihan dan petugas P3K.
- 3. Biaya untuk kegiatan teknis, antara lain biaya untuk gambar-gambar desain, biaya uji coba (misalnya test kubus/silinder beton) dan pengawasan, dan QA/QC.
- 4. Biaya untuk komunikasi dan survei, antara lain site radios, theodolite, auto level, dan level conventional.
- 5. Biaya rupa-rupa, antara lain mebel (*furniture*), komputer, *printer*, *plotter*, mesin tik, mesin fotocopy baik untuk gambar maupun yang biasa, mesin pemotong kertas, mesin gambar, dan mesin faksimili.
- 6. Inflasi, perubahan harga, tingkat suku bunga dan harga pasar.

Biaya-biaya yang ada dalam proyek tidak terbatas pada apa yang telah disebutkan di atas, masih banyak jenis biaya yang dapat ditambahkan atau dikurangi sesuai dengan kebutuhan perhitungan estimasi biaya. Daftar tersebut di atas dapat digunakan sebagai *check list* saja.

3.3 Keterkaitan Biaya Proyek Konstruksi dengan Harga Pasar dan Faktorfaktor Pengaruh Implisit Lainnya

Perhitungan teoritis estimasi biaya proyek konstruksi telah dibahas dalam subbab-subbab sebelumnya, tetapi hal-hal tersebut berkaitan dengan keadaan perekonomian yang normal. Perlu diketahui lebih lanjut bahwa kegiatan biaya tidak lepas dari hukum ekonomi secara umum, yaitu hukum penawaran dan permintaan barang di pasar. Beberapa hai yang sangat berpengaruh dan perlu menjadi bahan pertimbangan untuk perhitungan estimasi biaya proyek konstruksi antara lain:

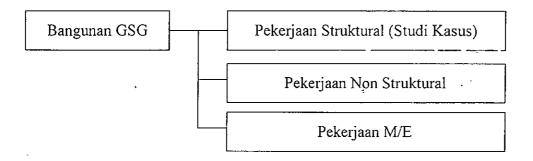
1. Ketersediaan/kelangkaan bahan di pasar. Semakin langka bahan material yang ada di pasar, semakin tinggi harga yang ditawarkan. Hal ini sesuai dengan hukum penawaran dan permintaan yaitu jika permintaan lebih tinggi dari penawaran maka harga akan cenderung tinggi. Sebaliknya jika permintaan lebih rendah dari penawaran maka harga akan cenderung turun. Di sisi lain perlu juga dipertimbangkan bahwa kenaikan harga juga dapat disebabkan oleh

- faktor-faktor pengaruh yang lain, misalnya akibat terjadinya inflasi, kebijakan moneter maupun kenaikan harga bahan bakar minyak.
- 2. Efisiensi dalam pembelian dan instalasi material perlu diperhitungkan dalam proyek. Misalnya pembuatan kusen berjenis sama dalam jumlah besar biasanya akan lebih murah dibandingkan dalam jumlah kecil.
- 3. Ketersediaan/kelangkaan sumber daya manusia dan peralatan. Dalam hal ini, hukum penawaran dan permintaan juga berlaku.
- 4. Teknologi yang canggih. Dalam melakukan estimasi perlu juga diperhitungkan apakah dalam proyek tersebut diperlukan teknologi yang canggih atau khusus sehingga memerlukan biaya yang lebih besar.
- Prediksi terjadinya inflasi selama proyek berlangsung/jangka waktu proyek.
 Hal ini sangat perlu diperhitungkan karena akan sangat berpengaruh terhadap biaya langsung yang tercantum dalam SRK.
- 6. Kelancaran sumber dana dan aliran kas dari pemilik proyek. Perhitungan aliran kas masuk dan aliran kas keluar harus benar-benar diperhitungkan dengan tepat karena akan berhubungan langsung dengan pembayaran dan ketersediaan material, upah dan peralatan untuk proyek.
- 7. Kebijakan pemerintah, misalnya dengan adanya program padat karya yang menggunakan tenaga manusia lebih banyak, maka penggunaan teknologi canggih tidak dapat terwujud. Hal ini perlu dipertimbangkan dalam melakukan estimasi biaya proyek secara keseluruhan.

Dari semua perhitungan yang dilakukan, pada akhirnya perlu diperhatikan dua strategi dalam perhitungan estimasi biaya, yaitu biaya dengan batas atas dan batas bawah. Biaya dengan batas atas berarti biaya dengan faktor resiko yang rendah dan sebaliknya biaya dengan batas bawah berarti memiliki efisiensi tinggi dengan faktor resiko yang tinggi pula. Dari kedua strategi inilah kemudian dapat dilakukan penawaran dan pelaksanaan pekerjaan.

4. STUDI KASUS

4.1 Gambaran Umum


Dalam penelitian ini, studi kasus yang digunakan adalah proyek bangunan gedung yaitu GSG (Gedung Serba Guna) yang berlokasi di Jalan Cimuncang,

Bandung yang akan digunakan untuk pusat pengembangan potensi anak yayasan Suryakanti. Gedung ini dibangun di atas pondasi *strauss* dengan struktur beton bertulang dan atap terbuat dari baja. Gambar dapat dilihat pada lampiran A.

Bangunan terdiri dari tiga lantai yang selanjutnya disebut sebagai lantai bawah (473.03 m²), lantai atas (489.03 m²) dan lantai atap (411.58 m²). Lantai bawah terdiri atas main entrance, toilet dan janitor, ruang sirkulasi, dapur, gudang, gymnastic hall, cafetaria. teras, ruang tidur penjaga, ruang tamu penjaga, toilet penjaga, dan koridor ke bangunan lain, yaitu bangunan klinik (bangunan klinik tidak dimasukkan dalam penelitian ini). Lantai atas terdiri dari toilet, prefunction, selasar, ruang sirkulasi, ruang serbaguna dan pertemuan, ruang operator, ruang ganti, pantry, gudang, dan koridor dari penginapan (penginapan tidak termasuk dalam penelitian ini). Lantai atap terdiri dari gudang dan dak beton.

4.2 Struktur Rincian Lingkup Kerja

Bangunan GSG ini terdiri dari tiga pekerjaan/paket besar yaitu pekerjaan struktural, pekerjaan non struktural dan pekerjaan *mechanical* dan *electrical* (M/E). Seperti yang telah diuraikan pada bab 3. masing-masing paket kerja diuraikan menjadi paket-paket kerja yang iebih kecil. Gambar 4.1 berikut ini adalah SRK untuk bangunan GSG dengan pembahasan dibatasi pada lingkup pekerjaan struktural (Gambar 1).

Gambar 1 SRK Bangunan GSG

4.3 Perincian Volume Pekerjaan dan Harga Satuan dalam Bill of Quantity

Setelah SRK dibuat sesuai dengan kebutuhan, maka langkah selanjutnya adalah melakukan perincian volume pekerjaan dan harga satuan. Perhitungan

analisis harga satuan dalam kontrak biasanya dilampirkan setelah *Bill of Quantity*/BQ disertai dengan daftar harga material dan upah pekerja. BQ untuk pekerjaan struktural bangunan GSG dapat dilihat pada tabel C.1 pada lampiran C. (Dalam penelitian ini, yang dibahas adalah harga satuan saja, sehingga dalam tabel-tabel berikutnya volume tidak ditampilkan).

4.4 Analisis Harga Satuan Dengan BOW

Dalam perhitungan pekerjaan *substructure* (pondasi) dan *upper structure* (struktur beton bertulang), yang menjadi dasar harga satuan adalah harga satuan untuk beton, tulangan/besi beton, bekisting dan perancah. Berikut ini perhitungan harga satuan menurut analisis BOW (analisis G41):

Beton: 1 m³ beton 1PC: 2 Ps: 3 Kr [8]

Bahan 1 m³ beton:

A 92	3	Krikil	<u></u>	T3	31.004		т.	04.400
0.62	III	KJIKII	@	кр	31,000	=	кр	24,420
0.54	m^3	Pāsir	@	Rp	33,000	= '	Rp	17,820
6.8	zak	Semen	@	Rp	14,080	=	Rp	95,744
					Bahan beton	=	Rp	138,984
		•			Dibulatkan	=	Rn	139,000

Keterangan: 1 zak semen untuk perhitungan BOW = 40 kg

Upah kerja 1 m³ beton:

6	Pekerja	@	Rp		10,000	=	Rp	60,000
0.3	Mandor	@	Rp		30,000	=	Rp	9,000
1	Tukang batu	@	Rp		17,500	=	Rp	17,500
0.1	Kep. Tukang	@	Rp	ı	25,000	=	Rp	2,500 _;
							Rp	89,000

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Besi beton (tulangan) [8]:

Bahan 100 kg besi beton:

110	Kg	Besi beton	@	Rp	3,200	=	Rp	352,000
1	Kg	Kawat ikat	@	Rp	6,000	=	Rp	6,000
					Bahan besi	=	Rp	358,000

Bahan besi beton/kg = Rp 3,580

Upah kerja 100 kg besi beton:

2.25	Kep.Tkg besi	@	Rp	25,000	=	Rp	56,250
6.75	Tukang besi	@	Rp	15,000	=	Rp	101,250
6.75	Pekerja	@	Rp	10,000	=	Rp	67,500
				Upah tulangan	=	Rp	225,000
				0.5 x upah	=	Rp -	112,500

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Upah kerja besi beton (tulangan)/kg = Rp 1,125

Bekisting: 10 m² untuk tiap m³ beton bertulang balok bebas, kolom bebas, plat dak, dan lantai [8]

Bahan 10 m² bekisting:

0.40	m^3	Papan klas IV	@	Rp	700,000	=	Rp	280,000
4	kg	Paku	@	Rp	4,000	=	Rp	16,000
					Bahan bekisting	=	Rр	296,000

Bahan bekisting/ $m^2 = Rp 29,600$

Upah kerja 10 m² bekisting:

				•			
0.5	Kep. Tukang	@	Rp	25,000	==	Rp	12,500
0.1	Mandor	@	Rp	30,000	=	Rp	3,000
5	Tukang kayu	@	Rp	20,000	=	Rp	100,000
2	Pekerja	@	Rp	10,000	=	Rp	20,000
4	Tk. Bongkar	@	Rp	10,000	=	Rp	40,000
	Bekisting /						
	siram beton						•
				Unah hekisting	==	Pn.	175 500

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Upah kerja bekisting/ $m^2 = Rp 17,550$

Untuk kolom jepit, ringbalk dan sloof digunakan separuh dari analisa ini.

Perancah/penyokong bekisting [8]:

Pekerjaan penyokong bekisting untuk 1 m³ beton dengan ketinggian maksimum 4 m.

Bahan:

0.70	m^3	Kayu ∳13 cm	@	Rp		7	700,0	000 =	Rp	490,000
Bahan	pera	ncah/penyokong	bek	isting	untuk	1	m^3	beton	dengan	ketinggian
maksir	num -	4 m = Rp 350,000)							

Upah:

1.05	Kep.Tukang	@	Rp	25,000	=	Rp	26,250
0.175	Mandor	@	Rp	30,000	=	Rp	5,250
10.50	Tukang	@	Rp	20,000	=	Rp	210,000
3.50	Pekerja	@	Rp	10,000	=	Rp	35,000
				Upah perancah	=	Rp	276,500

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Di samping perhitungan dasar di atas berikut ini dihitung pekerjaan persiapan yaitu pemasangan bouwplank per m sebagai pelengkap saja (analisis E17) [8].

Bahan:

0.005	m ³	Papan 2/20	@	Rp	1,000,00	0 =	Rp	5,000
0.004	m ³	Kaso 5/7	@	Rp	1,000,00	0 =	Rp	4,000
0.007	kg	Paku 7 cm	@	Rp	4,00	0 =	Rp	28
					Bahar	n =	Rp	9,028
					bouwplan	k		
Upah:								
0.08	•	Tukang kayu	@	Rp	20,000	-	Rp	16,000
800.0	,	Kep. Tukang	@	Rр	25,000	=	Rp	20
1]	Pekerja	@	Rp	10,000		Rp	10,000
0.025]	Mandor	@	Rp	30,000	=	Rp	750
					Upah	=	Rp	12,370
					bouwplank			

Jadi pekerjaan bouwplank per m = Rp 9,028 + Rp 12,370 = Rp 21,398 dibulatkan = Rp 21,400.

4.4.1 Pekerjaan Pondasi

Pekerjaan pondasi untuk bangunan GSG ini ada dua yaitu pondasi dangkal

(pondasi batu kali) dan pondasi dalam (pondasi strauss). Berikut ini adalah analisis harga satuan dengan BOW yang mengacu pada SRK gambar 4.2.

- A. Pondasi batu kali terdiri dari pekerjaan-pekerjaan berikut ini:
 - Galian pondasi batu kali, poer dan sloof dan urugan kembali bekas galian pondasi batu kali

Galian (analisis A 1) [8]

0.75	Pekerja	@	Rp	12,500	=	Rp	9,375
0.025	Mandor	@	Rp	30,000	=	Rp	750
				Galian	=	Rр	10,125

Keterangan: pekerja yang dimaksud adalah tukang gali.

Urugan (analisis A 17) [8]

- 0.5 Galian @ Rp 10,125 = Rp 5,062
 - 2. 1 m³ pasangan_macam batu kali campuran 1 PC. : ½ kapur : 5 pasir (analisis G 52f) [8]

Bahan:

1.20	m^3	Batu kali	@	Rp	21,000	=	Rp	25,200
2.556	m^3	PC	@	Rp	14,080	=	Rp	35,988
0.051	zak	Kapur	@	Rp	43,000	=	Rp	2,193
0.509	m^3	Pasir	@	Rp	23,000	=	Rp	11,707
					Bahan	=	Rр	75,088

Keterangan: 1 zak semen untuk perhitungan BOW = 40 kg

Upah:

1.2	Tukang batu	@	Rp	17,500		Rp	21,000
0.12	Kep. Tukang	@	Rp	25,000	=	Rp	3,000
3.6	Pekerja	@	Rp	10,000	==	Rp	36,000
0.18	Mandor	@	Rp	30,000	=	Rp	5,400
					=	Rp	65,400

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Di samping pekerjaan batu kali, ada pekerjaan aanstamping batu kali per m³ (analisis G 1) [8]:

Bahan:

1.20
$$m^3$$
 Batu kali @ Rp 21,000 = Rp 25,200
Upah:
5 Pekerja @ Rp 17,500 = Rp 87,500
0.25 Mandor @ Rp 30,000 = Rp 7,500
= Rp 95,000

Keterangan: pekerja yang dimaksud adalah tukang batu.

Jadi harga satuan untuk pekerjaan aanstamping batu kali per m³ = Rp 120,200.

B. Pondasi strauss terdiri dari pekerjaan-pekerjaan berikut ini:

1. Galian tanah pondasi strauss

Untuk galian lebih dari 1 m, ditambah biaya analisis A 6.

Galian (analisis A 6) [8]

0.15	Pekerja	@	Rp	12,500	=	Rp		1,875
0.0075	Mandor	@	Rp	30,000	=	Rp	•	225
				Galian	=	Rp .		2,100

Keterangan: pekerja yang dimaksud adalah tukang gali.

Jadi galian untuk pondasi strauss per m³ =
$$Rp 10,125 + Rp 2,100$$

= $Rp 12,225$.

2. Tulangan, bekisting dan cor beton dapat dilihat pada tabel C.2 dengan harga satuan beton dan tulangan sama dengan perhitungan subbab 4.4.

4.4.2 Pekerjaan Poer

Di atas pondasi *strauss* adalah poer. Tabel C.3 adalah perhitungan analisis harga satuan untuk pekerjaan poer per m³ dengan harga satuan beton, tulangan dan bekisting sama dengan 4.4.

Di bawah poer terdapat urugan pasir, analisis harga satuan per m³ (analisis A 12) [8]:

Bahan:

1.2 n	n ³ Pasir urug	@	Rр	18,000	=	Rp	21,600
Upah:							
0.3	Pekerja urug	@	Rp	12,500	=	Rp	3,750
10.0	Mandor	@	Rp	30,000	=	Rp	300
					=	Rp	4,050

Keterangan: upah pekerja urug diambil sama dengan tukang gali.

Jadi bahan dan upah pekerjaan urugan pasir di bawah poer per $m^3 = Rp 25,650$.

4.4.3 Pekcrjaan Beton

Pekerjaan beton terdiri dari pekerjaan untuk lantai bawah, lantai atas, lantai atap dan kolom pedestal untuk atap. Tabel C.4 adalah analisis untuk masing-masing pekerjaan.

Pada lantai bawah terdapat pekerjaan lantai beton tumbuk 1:3:5. Berikut ini analisis perhitungan 1 m³ beton campuran 1 pc:3 pasir:5 kerikil (analisis G 43 dan G 43a) [8]

Bahan:

0.91	m^3	Kerikil	@	Rp	31,000	=	$R_{\mathbf{P}}$	28,210
0.54	m^3	Pasir	@	Rp	23,000	=	Rp	12,420
4.54	zak	PC	@	Rp	14,080	=	Rp	63,923
					Bahan	=	Rp	104,553

Keterangan: 1 zak semen untuk perhitungan BOW = 40 kg

Upah:

. 6	Pekerja	@	Rp	10.000	=	Rp	60,000
0.3	Mandor	@	Rp	30,000	=	Rp	9,000
0.5	Tukang batu	@	Rp	17,500	=	Rp	8,750
0.05	Kep.Tkg. Batu	@	Rp	25,000	=	Rp	1,250
					=	Rp	79,000

Keterangan: pekerja yang dimaksud adalah pembantu tukang (laden).

Harga per m³ pekerjaan lantai beton tumbuk 1:3:2=Rp 183,553, dibulatkan = Rp 183,550.

Di bawah juga sloof terdapat urugan pasit t = 10 cm dengan harga satuan per m^3 sama dengan urugan pasir di bawah poer, yaitu = Rp 25,650.

4.4.4 Pekerjaan Baja

Dalam studi kasus ini pekerjaan baja adalah pekerjaan atap. Dalam analisis BOW, tidak ada perhitungan khusus untuk baja sehingga dalam studi kasus ini perhitungan baja khusus dihitung berdasarkan perhitungan dari Bina Marga. Perhitungan pekerjaan baja/kg, dihitung dengan menggunakan satu contoh perhitungan kemudian diambil harga tersebut sebagai harga pekerjaan baja/kg. Contoh yang digunakan adalah pekerjaan pemasangan kuda-kuda tipe K2, gambar seperti yang terdapat dalam lampiran A.

Bahan baja yang diperlukan untuk satu kuda-kuda tipe K2:

1. WF ukuran 350x175x7x11 dengan berat = 595.2 kg / 12 m

2 buah WF, panjang 1 WF = 9292 mm

Berat =
$$2 \times 9.292 \times 595.2 / 12 = 921.77 \text{ kg}$$

2 buah WF dibelah, panjang 1 WF = 400 mm

Berat =
$$2 \times 0.5 \times 0.4 \times 595.2 / 12 = 19.84 \text{ kg}$$

2 buah WF dibelah, panjang 1 WF = i000 mm

Berat =
$$2 \times 0.5 \times 1 \times 595.2 / 12 = 49.6 \text{ kg}$$

2. Pelat pengaku 10 mm x 4' x 8' = 10 mm x 1.2 m x 2.4 m = 233.3 kg

18 bh x 350 mm x 175 mm

Berat =
$$18 \times [0.35 \times 0.175 / (1.2 \times 2.4)] \times 233.3 = 89.31 \text{ kg}$$

3. Pelat sambungan 12 mm x 4' x 8' = 12 mm x 1.2 m x 2.4 m = 280 kg

2 bh x 640 mm x 175 mm

Berat =
$$2 \times [0.64 \times 0.175 / (1.2 \times 2.4)] \times 280 = 21.78 \text{ kg}$$

4. Base plate 19 mm x 4' x 8' = 19 mm x 1.2 m x 2.4 m = 443 kg

2 bh x 450 mm x 275 mm

Berat =
$$2 \times [0.45 \times 0.275 / (1.2 \times 2.4)] \times 443 = 38.07 \text{ kg}$$

Total berat bahan baja = $1.05 \times [921.77 + 19.84 + 49.6 + 89.31 + 21.78 + 38.07]$ = $1197.39 \times [921.77 + 19.84 + 49.6 + 89.31 + 21.78 + 38.07]$

Harga bahan baja = $1197.39 \times Rp 4,981 = Rp 5,964,199$

Upah pekerjaan baja = $0.12 \times 1197.39 \times Rp 15,000 = Rp 2,155,302$

5. Baut sambungan M 19 sebanyak 36 buah

Bahan = $36 \times Rp 3,500 = Rp 126,000$

Upah = $0.12 \times 36 \times Rp \ 15,000 = Rp \ 64,800$

Total biaya pekerjaan kuda-kuda baja tipe K2 seberat 1197.39 kg adalah

= Rp 8,310,301, sehingga biaya per kg baja = Rp 6,940.

4.5 Analisis dan Pembahasan Studi Kasus Bangunan GSG Yayasan Suryakanti

Setelah dihitung harga satuan untuk masing-masing pekerjaan, maka tabel BQ dapat diisi dengan harga satuan. Dalam studi kasus ini, selain harga satuan yang diperoleh dari perhitungan dengan metode BOW, digunakan harga satuan jadi yang diperoleh dari beberapa kontraktor/proyek yang berlokasi di Bandung, Indramayu dan Jakarta. Kemudian, dihitung harga untuk setiap elemen pekerjaan.

Hasil perolehan harga satuan untuk setiap elemen pekerjaan tersebut masing-masing dirata-rata jika terdiri dari beberapa tipe dalam satu elemen pekerjaan. Jika hanya terdiri dari satu tipe, maka angka tersebut langsung diambil sebagai harga satuan.

Contoh:

1. Untuk pekerjaan yang terdiri dari beberapa tipe.

Pekerjaan pondasi *strauss* memiliki 6 tipe, dengan ukuran dan jumlah besi tulangan yang berbeda dalam tiap m³ beton pondasi *strauss*. Dari keenam tipe ini, berat besi tulangan di rata-rata sehingga diperoleh 67 kg besi tulangan per m³ beton pondasi *strauss*. Harga satuan untuk masing-masing tipe pondasi *strauss* juga dirata-rata sehingga diperoleh harga Rp 543,235. Jadi diambil kesimpulan bahwa harga satuan rata-rata untuk pekerjaan pondasi *strauss* dengan besi tulangan rata-rata 67 kg per m³ beton adalah Rp 543,235 (analisis BOW). Demikian berulang-ulang dilakukan untuk setiap harga satuan masing-masing elemen pekerjaan baik yang berasal dari analisis BOW maupun yang berasal dari berbagai sumber yang telah disebutkan sebelumnya.

2. Untuk pekerjaan yang hanya terdiri dari satu tipe.

Pekerjaan galian tanah untuk pondasi batu kali, poer dan sloof. Harga satuan ini langsung diambil tanpa perlu dilakukan perhitungan rata-rata. Misalnya

untuk analisis BOW harga galian per m³ adalah Rp 10,125. Demikian pula dilakukan untuk setiap harga satuan masing-masing elemen pekerjaan lain baik yang berasal dari analisis BOW maupun yang berasal yang berasal dari berbagai sumber yang telah disebutkan sebelumnya.

4.5.1 Pekerjaan Substructure

Pekerjaan substructure dalam analisis ini adalah pekerjaan dengan nomor pekerjaan 1 sampai dengan 10.

1. Pekerjaan pasangan bouwplank

Analisis harga satuan dengan metode BOW memiliki harga yang paling mahal karena mahalnya upah yang diperlukan dalam pembuatan bowplank. Jika dibandingkan dengan analisis dari Suryakanti, dimana harga bahan adalah sama, yaitu Rp 9,028 maka upah hasil analisis BOW sangat mahal yaitu sebesar Rp12,370 sedangkan hasil analisis Suryakanti Rp 1,750 ditambah alat bantu Rp 500. Perbedaan yang besar terjadi karena koefisien upah dalam analisis BOW cukup besar, sehingga upah menjadi mahal. Perbedaan analisis dengan perusahaan lain terutama dapat disebabkan oleh perbedaan jenis kayu yang digunakan untuk bouwplank. Biasanya kayu yang digunakan tidak perlu terlalu bagus sehingga tidak menyebabkan harga bahan menjadi mahal. Penggunaan kayu bekas pakai pun dapat digunakan sehingga menghasilkan harga satuan yang lebih murah. Perusahaan konstruksi lain tidak menggunakan koefisien untuk upah melainkan langsung diambil harga lumpsum. Harga satuan yang paling murah adalah harga satuan dari SMK Indramayu, karena selain penggunaan kayu yang murah juga harga satuan upah untuk tiap pekerja lebih murah. Dalam hal ini terlihat bahwa faktor lokasi mempengaruhi harga satuan upah. Daerah Indramayu bukanlah termasuk perkotaan besar seperi Bandung dan Jakarta sehingga tingkat kehidupannya pun tidak semahal di kota besar. Hal inilah yang menyebabkan harga satuan upah di Indramayu menjadi lebih murah.

2. Pekerjaan galian tanah pondasi strauss

Analisis harga satuan dengan metode BOW dan SMK Indramayu lebih murah karena tidak adanya analisis khusus untuk pondasi *strauss* sehingga pekerjaan

diasumsikan dilakukan secara konvensional dengan tambahan biaya untuk tambahan kedalaman galian. Penggunaan alat bor dan tukang bor yang harus memiliki ketrampilan khusus menyebabkan harga satuan dari perusahaan kostruksi lain menjadi lebih mahal.

3. Pekerjaan galian tanah pondasi batu kali, poer dan sloof

Dalam hasil analisis terlihat bahwa harga satuan untuk pekerjaan ini tidak berbeda jauh karena pekerjaan galian tanah untuk pondasi batu kali, *poer* dan *sloof* sama-sama dilakukan dengan cara konvensional. Perbedaan yang terjadi hanyalah sedikit dan disebabkan oleh adanya sedikit perbedaan koefisien upah tergantung pengalaman masing-masing perusahaan. Yang sangat menyolok adalah hasil analisis dari SMK Indramayu. Jika dilihat lebih lanjut terlihat jelas bahwa perbedaan harga satuan upahlah yang menyebabkan harga satuan pekerjaan galian dari SMK Indramayu jauh lebih murah. Sebagai perbandingan adalah harga pekerja per hari untuk SMK Indramayu adalah Rp 7,500 dan mandor Rp 15,000, sedangkan untuk analisis dari Suryakanti harga pekerja per hari adalah Rp 12,500 dan mandor Rp 30,000.

4. Pekerjaan urugan pasir di bawah poer dan sloof dipadatkan 10 cm

Perbedaan harga satuan disebabkan oleh adanya perbedaan dari harga pasir per m³, yang disebabkan oleh perbedaan jenis pasir yang digunakan dan kemungkinan faktor lokasi yang mempengaruhi jumlah biaya transportasi dari sumber lokasi pengambilan pasir ke lokasi proyek yang dituju. Semakin jauh jarak yang harus ditempuh, maka biaya transportasi akan semakin mahal, dan jelas akan membebani harga pasir per m³.

5. Pekerjaan urugan kembali bekas galian pondasi batu kali

Analisis dari Suryakanti dan analisis dari SMK Indramayu memiliki harga yang terdekat karena pengambilan koefisien untuk upah hampir sama (Suryakanti: tukang = 0.2, mandor 0.012; SMK Indramayu: tukang = 0.192, mandor 0.019). Hasil analisis Suryakanti sedikit lebih mahal dibandingkan dari SMK Indramayu karena harga satuan upah di Bandung lebih mahal dibandingkan dengan di Indramayu. Hasil analisis lain menunjukkan harga yang lebih mahal karena dalam melakukan pekerjaan urugan ini digunakan pekerja terampil sehingga harga satuannya lebih mahal, sedangkan analisis

dari Suryakanti dan SMK Indramayu menggunakan pekerja yang bukan tenaga terampil untuk melakukan pekerjaan ini. Kebijaksanaan perusahaan konstruksi sangat mempengaruhi harga satuan terutama dalam hal pemilihan pekerja yang akan ditempatkan di lokasi proyek untuk melakukan pekerjaan yang sesuai dengan tingkat ketrampilan masing-masing pekerja.

6. Pekerjaan lantai kerja beton tumbuk 1:3:5

Pada pekerjaan lantai beton tumbuk, berbagai hasil analisis tidak menunjukkan perbedaan yang besar. Yang terlihat berbeda adalah hasil analisis dari Suryakanti dan proyek Tarumatex. Hal ini disebabkan oleh kemungkinan volume pekerjaan yang sedikit sehingga biasanya untuk pekerjaan yang sedikit harga satuan lebih mahal dari biasanya, sedangkan hasil analisis lain tidak memperhitungkan adanya faktor volume pekerjaan yang sedikit.

7. Pekerjaan pondasi straus

Dari hasil analisis terlihat bahwa harga satuan Suryakanti tergolong paling mahal karena dibandingkan yang lain harga pekerjaan beton per m³ nya lebih mahal. Yang termurah adalah dari PT Total Bangun Persada karena harga satuan untuk pekerjaan beton dan talangan lebih murah karena diambil pada tahun 1998. Disini terlihat bahwa faktor waktu mempengaruhi harga satuan. Terjadinya inflasi dan kenaikan harga sesuai dengan berjalannya waktu mempengaruhi harga satuan material dan upah.

8. Pekerjaan beton plat poer

Berbeda dengan pekerjaan pondasi *strauss*, pekerjaan ini selain memasukkan pekerjaan beton dan tulangan juga memerlukan bekisting. Hasil analisis dari beberapa perusahaan konstruksi menunjukkan bahwa harga termahal adalah analisis dari BOW. Dalam BOW, bekisting memiliki harga satuan yang mahal karena disamping perhitungan upah yang mahal akibat pengerjaan yang konvensional (tidak didukung adanya peralatan yang canggih) juga akibat tidak diperhitungkannya pemakaian bekisting yang berulang kali. Pembahasan mengenai hal ini akan terlihat lebih lanjut dalam pembahasan pekerjaan beton karena pekerjaan ini memiliki unsur pekerjaan beton yang besar.

9. Pekerjaan aanstamping batu kali

Harga satuan yang memiliki harga satuan paling mahal adalah analisis BOW karena upah yang digunakan sangat mahal sehinga terjadi perbedaan harga yang besar.

10. Pekerjaan pondasi batu kali 1 pc : 5 ps

Harga satuan pekerjaan tergantung dari harga batu belah. Batu belah merupakan material alam dimana faktor lokasi proyek dan lokasi sumber material mempengaruhi harga material tersebut.

4.5.2 Pekerjaan Beton

Pekerjaan beton terdiri dari pekerjaan berbagai macam elemen pekerjaan seperti yang diuraikan dalam Struktur Rincian Lingkup Kerja, mulai dari pondasi, sloof, kolom, balok, pelat, tangga, dan sebagainya. Yang dimaksud pekerjaan beton, di dalamnya termasuk pekerjaan pembuatan beton, pengecoran beton, pemasangan tulangan, pekerjaan pemasangan dan pembongkaran bekisting dan perancah. Berikut ini dianalisis harga satuan pekerjaan beton secara umum dan secara spesifik untuk hal-hal khusus (pelat dan balok) dengan pembagian pembahasannya berdasarkan analisis masing-masing perusahaan konstruksi yang ada dalam penelitian ini.

1. Metode analisis harga satuan dari BOW

Harga satuan pekerjaan beton dengan metode BOW rata-rata lebih mahal dibandingkan dengan harga satuan yang berasal dari sumber yang lain. Harga satuan yang lebih mahal ini secara umum disebabkan oleh cara perhitungan pada metode BOW yaitu pada perhitungan upah yang memiliki koefisien besar. Dalam BOW, kebanyakan pekerjaan dilakukan dengan cara konvensional. Peralatan canggih dan alat bantu tidak disebutkan dalam analisis tersebut, sehingga rata-rata upah untuk setiap pekerjaan lebih mahal dibandingkan dengan analisis dari sumber yang lain.

Harga satuan dari bahan beton BOW memang lebih murah dibandingkan yang lain karena merupakan beton konvensional, sedangkan yang lain mempergunakan ready mix. BOW memperhitungkan harga satuan untuk bahan benar-benar hanya memperhitungkan harga bahannya saja yaitu semen, pasir dan

kerikil, sedangkan pada *readv mix* perhitungan harga bahan tidak hanya semen, pasir dan kerikil saja tetapi juga tergantung dari:

- Pemilihan produsen pembuat beton; masing-masing perusahaan ready mix memiliki harga beton yang berbeda-beda (terjadi double profit oleh kontraktor dan produsen).
- Sistem pembelian (*Purchase Order*), apakah pembayaran langsung atau ditunda dapat mempengaruhi harga satuan beton. Biasanya pembayaran secara kontan dapat menghasilkan harga satuan yang lebih rendah dibandingkan pembayaran dengan tenggang waktu tertentu ataupun kredit.
- Lokasi dan jarak proyek ke batching plant. semakin jauh jarak yang ditempuh maka ongkos transportasi akan dibebankan terhadap harga beton ready mix, misalnya diperlukan biaya untuk jalan tol dan bahan bakar yang lebih banyak untuk transportasi jarak jauh.
- Peralatan yang diperiukan (misainya concrete pump) akan mempengaruhi harga satuan beton ready mix.
- Kebijakan kontraktor untuk memberikan faktor keamanan untuk menghadapi resiko kenaikan ready mix dari produsen maupun bahan bakar dan sewa peralatan.

Sebagai konsekuensi mahalnya harga bahan untuk ready mix, maka secara otomatis harga satuan upah ready mix lebih murah dibandingkan dengan harga satuan upah hasil analisis BOW karena upah untuk beton ready mix hanyalah untuk menuangkan/menempatkan beton (sesuai dengan tingkat kesulitan pengecoran) ke lokasi yang diinginkan dan biasanya menggunakan concrete pump. Dalam analisis BOW, upah yang dihitung lebih mahal karena upah yang dihitung adalah termasuk upah untuk mengaduk sampai menempatkan beton ke lokasi. Jadi singkatnya perbedaan harga terletak pada pembebanan biaya. Untuk harga satuan beton secara total memang tidak terlalu jauh karena dihitung berdasarkan per m³ beton, tetapi dalam 1 m³ pekerjaan beton terdapat beberapa m² bekisting dan sejumlah besi dalam kg, sehingga perkaliannya terhadap upah akan berpengaruh besar. Jadi jelaslah bahwa beban terhadap upah yang besar akan berpengaruh terhadap mahalnya harga satuan dengan metode BOW.

Perbedaan yang menyolok untuk pekerjaan beton adalah pada pekerjaan balok induk, balok anak dan pelat beton. Perbedaan ini perlu dibahas tersendiri karena dalam bangunan, pekerjaan yang memiliki pengaruh besar terhadap biaya keseluruhan adalah pekerjaan balok dan pelat. Perbedaan harga yang menyolok pada balok dan pelat ini, selain disebabkan oleh upah yang mahal secara umum (untuk beton, besi tulangan dan bekisting) juga disebabkan oleh adanya tambahan perhitungan perancah untuk setiap m³ beton yang mahal. Pada analisis yang berasal dari sumber yang lain (kecuali dari Indramayu) biaya perancah tidak dihitung terpisah, melainkan digabungkan dengan perhitungan bekisting. Harga yang diperoleh juga tidak terlalu mahal dibandingkan analisis BOW karena untuk masa sekarang penggunaan scaffolding dan alat bantu lain yang dapat disewa dan digunakan berulang lebih murah dibandingkan perancah konvensional seperti dalam analisis BOW. Di samping itu penggunaan bekisting dan perancah sebenarnya dapat digunakan berulang kali, sedangkan dalam analisis BOW tidak ada perhitungan keberulangan pemakaian bekisting dan perancah sehingga diasumsikan pemakaiannya hanya satu kali. Hal inilah yang menyebabkan mahalnya harga bekisting dan perancah dalam analisis BOW.

Walaupun hasil dari analisis BOW menghasilkan harga satuan yang secara umum paling mahal, analisis ini paling sering digunakan oleh konsultan sebagai plafond budget dalam menentukan harga satuan di dalam perkiraan biaya wajar (jair-cost estimates). Hal ini memberikan "kelonggaran" atau "rentang" terhadap para kontraktor dalam mengajukan penawaran sehingga masih dapat memberikan keuntungan dengan batas yang wajar. Keuntungan dengan batas yang wajar ini akan terlihat dengan adanya harga pasar yang timbul di antara para kontraktor dalam melakukan persaingan yang wajar.

2. Analisis dari Yayasan Suryakanti, Bandung

Setelah BOW, harga satuan yang tergolong mahal adalah analisis dari Suryakanti. Penyebab mahalnya harga satuan adalah tidak adanya uang muka dari pemilik proyek terhadap kontraktor. Dengan tidak dibayarkannya uang muka (termin dibayar mingguan) berarti kontraktor harus membayar terlebih dahulu pekerjaan yang dilakukan di lapangan sehingga ada sejumlah *opportunity cost*

yang harus dibayar oleh kontraktor dalam membiayai pembangunan proyek. Untuk mengimbangi adanya opportunity cost tersebut, maka Suryakanti memiliki harga satuan yang lebih mahal. Penyebab lain adalah adanya bangunan beton yang diekspose yaitu pelat (tanpa plafond) sehingga diperlukan pemakaian multipleks baru dan menyebabkan harga satuan menjadi mahal.

3. Analisis dari proyek SMK Indramayu

Proyek SMK di Indramayu memiliki harga satuan yang lebih murah dibandingkan Suryakanti, kecuali untuk pekerjaan balok induk, balok anak dan pelat. Penyebab lebih mahalnya pekerjaan tersebut adalah penggunaan analisis pekerjaan beton bertulang Indramayu mirip dengan BOW yaitu memperhitungkan adanya perancah untuk setiap m³ beton.

Proyek SMK di Indramayu secara umum lebih mahal dibandingkan dengan PT Total Bangun Persada, proyek Tarumatex maupun PT Dirgantara Yudha Artha karena secara umum harga beton, harga tulangan dan harga bekisting yang lebih mahal dibandingkan yang lain. Mahalnya harga beton, tulangan dan bekisting disebabkan oleh mahalnya upah (koefisien upah lebih besar, bukan upah per pekerjanya). Analisis ini paling mirip dengan metode BOW, harga satuan beton, tulangan dan bekisting yang mahal disebabkan oleh pekerjaan yang dilakukan dengan cara konvensional sehingga koefisien upah menjadi besar.

4. Analisis dari proyek Tarumatex, Bandung dan PT Dirgantara Yudha Artha, Bandung

Harga satuan yang paling memiliki kemiripan adalah harga satuan dari proyek Tarumatex dari PT Dirgantara Yudha Artha. Kemiripan harga satuan ini disebabkan oleh kedua harga satuan tersebut sama-sama digunakan di Bandung. Perbedaan disebabkan oleh perbedaan waktu dan kebijaksanaan kontraktor dalam mengambil resiko. Terlihat bahwa kesamaan lokasi sangat berpengaruh terhadap penentuan harga satuan, hal ini akan berkaitan dengan persaingan dalam mendapatkan/memenangkan tender dalam lokasi yang sama yaitu di Bandung.

5. Analisis dari PT Total Bangun Persada

Harga satuan yang terendah untuk pekerjaan beton secara umum adalah harga satuan yang berasal dari PT Total Bangun Persada, Jakarta. Walaupun lokasi berada di Jakarta, harga satuan tersebut lebih murah karena harga satuan tersebut adalah harga satuan yang digunakan sekitar awal tahun 1998 dimana ready mix yang digunakan saat itu lebih murah dibandingkan dengan yang lain pada saat sekarang. Begitu pula terjadi pada harga satuan besi tulangan. Fluktuasi harga ini memperlihatkan adanya faktor inflasi yang besar terhadap harga yang berlaku di pasaran. Jadi dalam hal ini jelaslah bahwa perbedaan waktu dapat menyebabkan perbedaan harga satuan.

4.5.3 Pekerjaan Baja

Khusus untuk pekerjaan baja, analisis yang dilakukan bukan berasal dari metode BOW, melainkan berasal dari Bina Marga. Terlihat bahwa harga untuk pekerjaan baja dari Bina Marga pun memberikan batas "kelonggaran" atau "rentang" yang cukup bagi para kontraktor untuk mendapatkan keuntungan yang wajar. Harga penawaran dari sumber lain terlihat secara rata-rata berada di bawah harga satuan yang berasal dari Bina Marga kecuali dari PT Total Bangun Persada. Jakarta yang dapat disebabkan karena terjadinya fluktuasi harga akibat perbedaan waktu dan lokasi.

Pada dasarnya harga baja/kg juga dipengaruhi oleh berbagai hal, misalnya lokasi proyek (berkaitan dengan biaya transportasi), ketersediaan peralatan, keterampilan pekerja yang diperlukan, tingkat kesulitan dan metode pemasangan konstruksi baja dan sebagainya.

4.5.4 Koreksi Terhadap Analisis Harga Satuan dengan Metode BOW

Dari penelitian ini penulis juga menganalisis bahwa pada kenyataannya metode BOW tidak selalu tepat digunakan secara langsung. Prinsip-prinsip perhitungan dengan menggunakan metode BOW dapat digunakan dengan beberapa pertimbangan atau koreksi. Koreksi terutama dapat dilakukan pada perhitungan upah untuk masing-masing pekerjaan karena pada saat ini penggunaan peralatan canggih dan alat bantu yang modern telah dapat membuat

proyek menjadi proyek yang padat modal. Padat modal dalam hal ini berarti penggunaan peralatan canggih dan alat bantu yang modern sehingga mengurangi biaya untuk pembayaran upah.

Selain itu, penggunaan koefisien BOW perlu dikoreksi terhadap beberapa hal berikut ini:

- Lokasi proyek, perlu ditinjau apakah lokasi proyek akan mempengaruhi biaya.
 Biasanya lokasi proyek yang jauh atau sulit dijangkau memiliki biaya yang lebih besai karena biaya transportasi akan meningkat.
- Waktu dimulainya proyek, jangka waktu pembangunan proyek dan waktu diselesaikannya proyek. Dalam hal ini periode studi (istilah dalam ekonomi teknik) perlu dipertimbangkan, apakah harga-harga akan berfluktuasi berkaitan dengan kondisi pasar yang ada (hukum penawaran dan permintaan), tingkat suku bunga yang berlaku dan kemungkinan adanya inflasi dan kenaikan harga baik upah maupun material. Seorang estimator harus dapat melakukan prediksi yang tepat berkaitan dengan hal implisit ini (termasuk di dalamnya adalah biaya operasi proyek secara rutin, biaya untuk gaji karyawan, dan sebagainya seperti yang telah diuraikan sebelumnya dalam bab 3), dan mendistribusikan biaya seperti ini ke dalam biaya langsung dengan baik karena pada kenyataannya, harga satuan pekerjaan tidak hanya ditentukan oleh koefisien koefisien pembentuk harga satuan bahan dan upah saja. Biasanya perusahaan konstruksi memberikan "cadangan biaya" untuk hal-hal implisit tersebut di atas dengan mendistribusikan biaya tidak langsung (terutama yang implisit) ke dalam biaya langsung. Jumlah biaya tersebut sangatlah tergantung dari kebijakan masing-masing perusahaan dalam keberaniannya mengambil resiko terhadap ketidakpastian.
- Tingkat kesulitan pekerjaan maupun tata laksana serta metode yang digunakan di lapangan. Dalam hal ini proyek perlu dipandang sebagai pekerjaan yang unik dan memiliki situasi dan kondisi yang tergantung dari berbagai faktor.
- Perhitungan perancah dengan menggunakan kayu diameter 13 cm yang sulit didapat dapat diganti dengan kayu balok. Selain dapat dipakai berulang kali, sisa kayu balok untuk perancah dapat digunakan untuk rangka *plafond* sehingga harga satuan perancah menjadi lebih murah.

Pada akhirnya, dalam menentukan harga satuan pekerjaan, sebenarnya harga pasar sangatlah memegang peranan penting. Hal ini disebabkan karena persaingan akan sangat ditentukan oleh harga pasar. Namun, harga pasar saja tidak memberikan jaminan keuntungan yang wajar sehingga harga pasar pun harus dapat dikoreksi dengan persaingan antar perusahaan konstruksi melalui mekanisme tender sehingga terdapat persaingan yang wajar dan diperoleh suatu penawaran yang terendah yang masih dapat dipertanggunjawabkan (the lowest responsible bid).

5. PENUTUP

Perhitungan analisis harga satuan dengan metode BOW masih dapat digunakan khususnya untuk pekerjaan yang sampai saat ini masih dilakukan secara konvensional, misalnya untuk pekerjaan galian tanah pondasi batu kali, pekerjaan urugan pasir, dan urugan kembali bekas galian tanah pondasi.

Secara umum, prinsip-prinsip analisis BOW (pemakaian koefisien-koefisien) dalam menghitung harga satuan untuk berbagai macam pekerjaan masih dapat digunakan dengan syarat adanya koreksi terhadap tingkat kesulitan dan tata laksana yang berbeda dalam setiap pekerjaan, perhitungan faktor-faktor implisit seperti tingkat bunga, inflasi, perubahan harga, lokasi proyek dan waktu pelaksanaan pekerjaan. Dengan adanya koreksi, diharapkan pemilik dapat memperoleh fair-cost estimates yang lebih akurat.

Analisis harga satuan dengan metode BOW dapat digunakan konsultan dalam menentukan plafond budget untuk estimasi biaya wajar (fair-cost estimates) bagi pemilik sehingga kontraktor masih memiliki kesempatan memperoleh keuntungan yang layak dan wajar dalam penawarannya. Dalam hal ini mekanisme tender perlu dilakukan agar terjadi persaingan yang sehat dan terbentuk penawaran yang terendah yang masih dapat dipertanggungjawabkan (the lowest responsible bid).

Analisis BOW kurang tepat digunakan untuk analisis harga satuan balok dan pelat karena hasilnya sangat jauh di atas harga rata-rata. Hal ini disebabkan oleh mahalnya harga bekisting dan perancah.

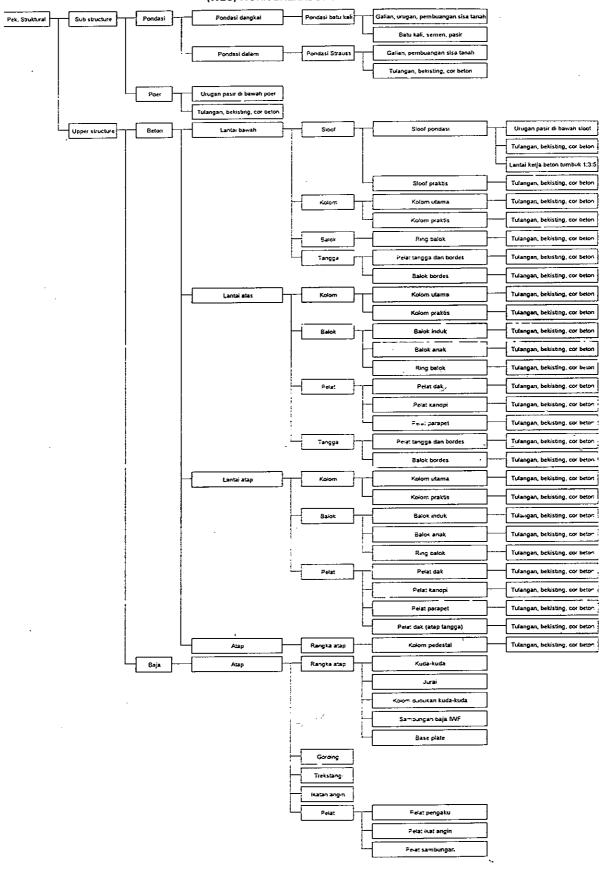
Untuk pekerjaan baja, analisis dari Bina Marga menghasilkan harga satuan di atas rata-rata, tetapi tidak berbeda jauh dengan yang lain sehingga masih dapat digunakan. Koreksi tentu saja perlu dilakukan berkaitan dengan kondisi masingmasing proyek, baik dari segi lokasi, waktu, tata laksana maupun tingkat kesulitan serta metode yang digunakan.

Analisis harga satuan untuk setiap proyek hendaknya benar-benar disesuaikan dengan harga yang berlaku di pasaran, sehingga analisis yang benar-benar teoritis digunakan sebagai dasar perhitungan dan pembanding saja. Pada kenyataannya, harga pasar yang dipengaruhi berbagai faktor adalah yang akan menentukan harga satuan untuk masing-masing pekerjaan.

Biasanya perusahaan konstruksi memiliki perhitungan analisis harga satuan masing-masing pekerjaan sesuai dengan pengalaman yang dimiliki oleh masing-masing perusahaan, baik untuk koefisien bahan. upah, alat serta harga pasar yang berlaku. Perhitungan ini sebaiknya dapat digunakan untuk proyek sejenis berikutnya karena telah diuji ketepatannya, dengan penyesuaian sesuai kebutuhan dan kondisi saat itu.

Untuk dapat menyempurnakan analisis harga satuan dengan prinsipprinsip penggunaan koefisien seperti dalam BOW, perlu dilakukan penelitian
lebih lanjut oleh suatu badan yang berwenang mengadakan penelitian mengenai
bangunan. Studi lebih lanjut perlu dilakukan, terutama studi yang berkaitan
dengan studi kebutuhan material untuk berbagai macam pekerjaan, studi
produktivitas pekerja dan produktivitas peralatan serta kombinasi keduanya. Di
samping itu perlu dilakukan juga studi-studi baru yang pada zaman Belanda dulu
belum dilakukan berkaitan dengan berkembangnya peralatan canggih dan
teknologi modern. Studi-studi tersebut perlu dilakukan secara berkala dan terus
menerus agar dapat mengikuti perkembangan jaman.

Analisis BOW yang digunakan dalam menentukan plafond budget dalam fair-cost estimate untuk pemilik sebaiknya digunakan jika penawaran kepada kontraktor dilakukan melalui mekanisme tender dan tidak digunakan untuk proyek dengan cara penunjukkan langsung.



6. DAFTAR PUSTAVA

- 1. Ahuja, H.N. Estimating from Concept to Completion. New York: Prentice Hall Inc., 1988.
- 2. Barrie, Donald S. dan Boyd C. Paulson, Jr. Professional Construction

 Management. 2nd ed. New York: McGraw Hill, 1984.
- 3. Degarmo E. Paul, James A. Bontadelli dan William G. Sullivan. *Engineering Economy*. 9th ed. New York: Macmillan Publishing Company, 1993.
- 4. Fajardo, Max B. Jr. Simplified Construction Estimate. 3rd ed. Philippines: 5138 Merchandising Publisher, 1995.
- 5. Gunawan, Anton H. Anggaran Pemerintah dan Inflasi di Indonesia. Jakarta: Gramedia, 1991.
- 6. Helyar, Frank W. F.R.I.C.S. Construction Estimating and Costing. Canada: McGraw Hill Ryerson Limited, 1978.
- 7. Joyowiyono, M. Ekonomi Teknik. Jakarta: Departemen Pekerjaan Umum, 1993.
- 8. Muko-muko, J.A. Dasar Penyusunan Anggaran Biaya Bangunan. Jakarta: Gaya Media Pratama, 1994.
- 9. Oberlender, Garold D. Project Management for Engineering and Construction. Singapore: McGraw Hill, 1993.
- 10. Peurifoy R.L. Estimating Construction Cost. 3rd ed. New York: McGraw Hill, 1975.
- 11. Soeharto, Iman. Manajemen Proyek dari Konseptual Sampai Implementasi. Jakarta: Erlangga, 1997.
- '12. Stewart Rodney D. Cost Estimator's Reference Manual. New York: Willy Series in New Dimensions in Engineering.

(SRK) STRUKTUR RINCIAN LINGKUP KERJA = (WBS) WORK BREAKDOWN STRUCTURE

No.	Pekerjaan			Satuar	Volume	Harga Satuan	Jumlah
	Struktural						
Α.	Pekerjaan persiapan				}		
1	Pasangan bouwplank			m	134.60		
B.	Pekerjaan lantai bawah						<u> </u>
B.1	Pekerjaan tanah dan pasir						
1	Galian tanah pondasi strauss			m³	573.65		
2	Galian tanah pondasi batu kali, poer dan sloof			m^3	179.66		
	Urugan pasir di bawah poer dan sloof dipadatkan 10	cm		m³	18.93		
4	Urugan kembali bekas galian pondasi batu kali			m³	25.82		
5 B.2	Lantai kerja beton tumbuk 1 : 3 : 5 Pekerjaan pondasi			m³	3.31		
	Pondasi strauss	73	kg	g m ³	1.20		
	Pondasi strauss	67	kg	1 .	0.75		
- 1	Pondasi strauss \(\phi \) 400 TP 3	64	kg	' I .	24.33		
	Pondasi strauss ф 400 TP 4	64	kg	·	11.21		•
	Pondasi strauss \(\phi \) 400 TP 5	64	kg kg	Ί,	14.95		
- 4	Pondasi strauss	7ŭ	kg				
	Pekerjaan beton plat poer TP I	334	_	1 - 1	5.04 0.30		
- 1	Pekerjaan beton plat poer TP 2	289			0.14		
	Pekerjaan beton plat poer TP 3	311	ra kg		9.83		
- 1	Pekerjaan beton plat poer TP 4	253	kg	1 . 1		-	
	Pekerjaan beton plat poer TP 5	236	kg kg		8.56		
	Pekerjaan beton plat poer TP 6	376	kg kg	1 - 1	11.34	ľ	
	Pekerjaan aanstamping batu kali	370	νg	m ³	3.57	-	
	Pekerjaan pondasi batu kali Ipo : Sps			m ³	16.31		
.3 F	Pekerjaan sloof beton K-250			i	36.15	Ì	
	Sloof praktis				ļ		
1 S	Bloof beton praktis tipe 150/200 Bloof pondasi	150	kg	m³	3.02		
ıs	Gloof beton tipe SB 1 200/400	187	kg	m³	6.77		
	Sloof beton tipe SB 2 250/500	130	kg	m ³	1.86		
,	floof beton tipe SB 3 200/400	202	kg	m ³	0.40		
s	loof beton tipe SB 4 200/400	190	kg	m ³	1.06		
	loof beton tipe SB 5 250/500	111	kg	m ³	0.78		
- 1	loof beton tipe SB 6 250/500	102	kg i	m³	2.08		
s	loof beton tipe SB 7 250/600	125	kg	m³	2.18		
	loof beton tipe SB 8 200/400	200	kg	m ³	0.58		
SI	loof beton tipe SB 9 300/400	142	kg	m ³	1.73		
	loof beton tipe SB 10 200/300	315	kg	m ³	0.64		
SI	oof beton tipe SB 11 200/400	282	kg	m³	0.04		
4 Pe	ekerjaan kolom beton K-250 olom utama K-250		~=		0.10		
- 1	olom tipe K + 450/450/900	116	kg	m ³	2.02		
	olom tipe K 2 300/300/200	154	kg	m³	2.92		
- 1	plom tipe K 3 300/300/200	145	- 1	m m³	2.88		
1	plom tipe K 4 300/300	218	kg	m m³	1.44		
- 1	olom tipe K 6 450/450	186	kg	m m³	0.89		
	olom tipe K 7 450/450	288	kg	m³	2.04	1	
	olom tipe K 8 250/250		кg		2.04		
_	blom tipe K 9 450/450	310 186	kg kg	m ³	0.90		

BILL OF QUANTITY GEDUNG SERBA GUNA YAYASAN SURYAKANTI, JL. CIMUNCANG, BANDUNG

No.	Pekerjaan			Satuan	Volume	Harga Satuan	Jumlah
9	Kolom tipe K 10 450/450	288	kg	m³	1.94		
10.	Kolom tipe K 11 250/250	310	kg	m³	. 0.63		
П	Kolom tipe K 13 250/300	159	kg	m³	0.72		•
12	Kolom tipe K 15 250/250	195	kg	m³	0.30		
13	Kolom tipe K 16 200/200	296	kg	m³	1.15		
14	Kolom tipe K-17 450/450 Kolom praktis	142	kg	m³	1.70		
I	Kolom praktis 12/12	257.25	kg	m³	8.29		
B.5	Pekerjaan balok beton K-250						
1	Ring balok 15/20	224.15	kg	m³	6.30		
B.6	Tangga						
	Tangga tipe I			m³			
1	Pekerjaan plat tangga dan bordes	133	kg	m³	1.91		
2	Pekerjaan balok bordes Tangga tipe II	134	kg		0.24		
1	Pekerjaan plat tangga dan bordes	242	kg	m³	2.04		
2	Pokerjaan balok bordes	172	kg	m³	0.29		
C. C.1	Pekerjaan lantai atas Pekerjaan kolom beton K-250 Kolom utama K-250						
1	Kolom tipe K T 450/450/900	117	kg	m³	2.13		
2	Kolom tipe K 2 300/300/200	155	kg	m³	2.70		
. 3	Kolom tipe K 3 300/300/200	145	kg	m³	1.35	,	
4	Kolom tipe K 4 300/300	219	kg	m³	0.78	-	
5	Kolom tipe K 6 450/450	188	kg	m³	1.94	İ	
6	Kolom tipe K 8 250/250	311	kg	m³	0.84		
7	Kolom tipe K 9 450/450	188	kg	m³	1.94		
8	Kolom tipe K 10 450/450	140	kg	m³	1.94		
9	Kolom tipe K 11 250/250	196	kg	m ³	0.56		
10	Kolom tipe K 13 250/300	159	kg	m³	0.68		
	Kolom tipe K 15 250/250	196	kg	m³	0.28		
	Kolom tipe K 17 450/450 Kolom praktis	140	kg	m³	1.94		
	Kolom praktis 12/12 Pekerjaan balok beton K-250 Balok induk	257.25	kg	m³	. 4.23		
1	Balok tipe 2B1 250/500	197	kg	m³	0.37		
2	Balok tipe 2B2 200/400	161	kg	m³	0.74		
3	Balok tipe 2B3 250/500	168	kg	m³	1.45		
4	Balok tipe 2B4 250/500	195	kg	m³	0.71		
5	Balok tipe 2B7 250/500	325	kg	m³	1.42		
6	Balok tipe 2B8 250/500	275	kg	m³	0.68		
7	Balok tipe 2B10 250/500	356	kg	m³	2.16		
8	Balok tipe 2B12 250/500	289	kg	m ³	2.63		
9	Balok tipe 2B14 250/500	134	kg	m³	2.74		
10	Balok tipe 2B16 250/500	109	kg	m³	1.51		
11	Balok tipe 2B17 250/500	117	kg	m³	0.79		
12	Balok tipe 2B18 200/400	193	kg	m ³	0.57		
13	Balok tipe 2B 20 250/500	219	kg	m ³	1.26		

No.	Pekerjaan			Satuan	Volume	Harga Satuan	Jumlah
14	Balok tipe 2B 21 250/500	209	kg	m³	2.50		
15	Balok tipe 2B 22 250/500	166	kg	m³	0.90		
16	Balok tipe 2B 23 250/500	171	kg	m³	0.82		-
17	Balok tipe 2B 24 250/500	121	kg	m³	0.60		
18	Balok tipe 2B 26 200/400	425	kg	m³	0.07		
19	Balok tipe 2B 28 200/400	201	kg	m³	1.07		
20	Balok tipe 2B 29 200/400	161	kg	m³	0.88		
21	Balok tipe 2B 31 300/600	166	kg	m³	. 1.94		
22	Balok tipe 2B 34 250/500	104	kg	m³	0.95		
23	Balok tipe 2B 35 300/600	132	kg	m³	3.31		
24	Balok tipe 2B 36 300/800 Balok anak	152	kg	m³	4.96		
1	Ralok tipe 2B5 200/400	239	kg	m³	0.72		
2	Balok tipe 2B6 200/400	194	kg	m³	0.10		
3	Balok tipe 2B9 200/400	266	kg	m³	0.74		
4	Balok tipe 2B11 200/400	321	kg	m³	0.20		
5	Balok tipe 2B13 200/400	161	kg	m³	1.64	Ì	
6	Balok tipe 2B15 200/400	193	kg	m³	0.53		
7	Balok tipe 2B19 250/500	157	kg	m³	4.89		
8	Balok tipe 2B 25 200/400	230 -	kg	m³	1.15		
9	Balok tipe 2B 27 200/400	160	kg	m³	0.14		
10	Balok tipe 2B 30 200/400	182	kg	m³	0.19		
11	Balok tipe 2B 32 200/400	174	kg	m³	0.27		
1.2	Balok tipe 2B 33 200/400 Ring balok	169	kg	m³	0.72		
1 C.3	Ring balok 15/20 Pekerjaan plat lantai beton K-250	224.15	kg	m ³	3.17		,
1	Plat lantai tipe S1 slab t.120	72	kg	m³	66.53		
2	Plat lantai tipe S2 slab t.140	73	kg	m³	2.00	-	
3	Plat kanopi slab t.120	104	kg	m ³	2.11		
4	Plat parapet beton	284	kg	m³	0.53		
C.4	Tangga Tangga tipe l			_			
1	Pekerjaan plat tangga dan bordes	133	kg	m ⁵	1.91		
2	Pekerjaan balok bordes Tangga tipe II	134	kg	m³	0.24		
1	Pekerjaan plat tangga dan bordes	242	kg	m³	2.04		
2	Pekerjaan balok bordes	172	kg	m²	0.29		
D. D.1	Pekerjaan Lantai atap dan atap Pekerjaan kolom beton K-250 Kolom utama						
1	Kolom tipe K 2 300/300/200	166	kg	m³	1.77		
2	Koloin tipe K 3 300/300/200	166	kg	m³	0.75		
3	Kolom tipe K 5 300/300/200	166	kg	m³	0.75		
4	Kolom tipe K 13 300/200	318	kg	m³	0.24		
5	Kolom tipe K 14 300/300	204	kg	m ³	0.84	•	
6	Kolom tipe K 15 200/200	318	kg	m³	0.12		
<u> </u>	Kolom praktis						
1	Kolom praktis 12/12	257.25	kg	m³	1.35		
D.2	Pekerjaan balok beton K-250			[

No.	Pekerjaan			Satuan	Volume	Harga Satuan	Jumlah
	Balok induk						
1	Balok tipe AB16 200/500	130	kg	m³	0.31		
2	Balok tipe AB18 200/500	136	kg	m³	0.31		-
3	Balok tipe AB9 200/300	213	kg	m³	0.55		
4	Balok tipe RB1 300/600	126	kg	m³	5.80		
5	Balok tipe RB2 200/400	142	kg	m³	1.54		
6	Balok tipe RB3 250/500	99	kg	m³	2,50		
7	Balok tipe RB6 300/600	134	kg	m³	4.31		
8	Balok tipe RB7 400/600	97	kg	m³	1.44		
9	Balok tipe RB8 200/400	182	kg	m³	0.67		
10	Balok tipe RB9 200/300	221	kg	m³	0.73		
11	Balok tipe RB10 250/500	127	kg	m ³	2.25		
	•	160	kg	m³	0.45	1	
12	Balok tipe RB11 250/500	146	kg	m ³	1.20		
13	Balok tipe RB13 250/500	105	kg	m ³	2.70		
14	Balok tipe RB14 250/500	158	-	. m ³	0.39		
15	Balok tipe RB15 250/500		kg	m ³	0.59		
16	Balok tipe atap tangga B1 200/400	166	kg				
!7	Balok tipe atap tangga B2 200/400	127	kg	m ³	2.42	ĺ	
18	Balok tipe atap tangga B3 L. 200/350/350	160	kg	m³	3.16		
	Balok anak	244		m ³	0.60		
1	Balok tipe RB4 200/400	241	kg		0.60		
2	Balok tipe RB5 200/400	181	kg	m³	0.77		
3	Balok tipe RB12 200/400	15∔	kg	m³	1.16		
4	Balok tipe RB17 200/400 Ring balok	198	kg	m³	. 0.30	·	
1	Ring balok 15/20	224.15	kg	m³	1.02	İ	
D.3	Pekerjaan plat dak beton K-250						
1	Plat dak tipe S1 slab t.120	73	kg	m³	26.26		
2	Plat dak tipe S2 slab 1.140	79	kg	m³	0.92		
3	Plat kanopi slab t.120	106	kg	m	3.19		
4	Plat dak tipe S1 slab t.120 (atap tangga)	81	kg	m³	2.75		
5	Plat dak tipe S2 slab t.140 (atap tangga)	55	kg	m ³	6.90		
ó	Plat parapet beton	202	kg	m ⁵	1,72		
D.4	1						
1	Kolom pedestal tipe 450/450	204	kg	m³	0.43		
2	Kolom pedestal tipe 275/450	231	kg	m ³	0.53	1	
3	Kolom pedestal tipe 200/300	273	kg	m³	0.38		
4	Kuda-kuda tipe K1 Baja IWF 350.175.7.11			kg	1,075.00		
5	Kuda-kuda tipe K2 Baja IWF 350.175.7.11			kg	985.00		
6	Kuda-kuda tipe K3 Baja IWF 250.125.6.9			kg	785.00	i	
7	Kuda-kuda tipe K4 Baja IWF 250.125.6.9			kg	342.00		
8	Jurai tipe J1 Baja IWF 350.175.7.11			kg	1,292.00 324.00		
9	Kolom dudukan kuda-kuda Baja IWF 350.175.7.11 Kolom dudukan kuda-kuda Baja IWF 250.125.6.9			kg kg	192.00	1	
10 11	Baja pengaku kuda-kuda IWF 250.125.6.9			kg	77.90	1	
12	Sambungan baja IWF 350.175.7.11 (dibelah)			kg	198.00	1	
13	Sambungan baja IWF 250.125.6.9 (dibelah)			kg	44.00		
14	Plat sambungan t, 12 mm			kg	362.00	1	
15	Plat pengaku t. 10 mm			kg	217.00	1	
16	Plat ikat angin t. 10 mm			kg	28.00	1	
17	Plat dudukan gording t. 6 mm			kg	8.50	1	l

No.	Pekerjaan	Sa	tuan	Volume	Harga Satuan	Jumlah
	Siku L. 60.60.6 penahan gording	l l	kg	47.50	1	
19	Gording C. 150.65.20.3,2		kg	2,397.94	1 1	
20	Plat sambungan M.19	I	bh	252.00	1	-
21	Anker baut (anschor bolt M.19)	I	bh	104.00	1	
22	Baut siku gording 12	ŀ	bh	94.00	1	
23	Base plat t. 19 mm		kg	168.00		
24	Trekstang \(\phi \) 16	•	kg	235.96		
25	Ikat angin \(\phi \) 16	İ	kg	161.00		
26	Wartelmoor spanskrup \(\phi \) 16		bh	10.00		

GEDUNG SERBA GUNA YAYASAN SURYAKANTI, JL. CIMUNCANG, BANDUNG

ģ	Pekerjaan		S	Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan PT TBP	Harga Satuan Tarumatex	Harga Satuan PT DY A
∵ -	Struktural Pekerjaan persiapan Pasangan bouwplank	·		ε	21,400	11,300	4,560	6,520	7,120	6.780
œ.	Pekerjaan lantai bawah									
<u>м</u>	Pekerjaan tanah dan pasir									
_	Galian tanah pondasi strauss			~E	12,225	17,300	10,450	17,500	16,500	15,500
7	Galian tanah pondasi batu kali, poer dan sloof			ຼີ	10,125	7,600	4,180	10,500	10,000	000'6
3	Urugan pasir di bawah poer dan sloof dipadatkan 10cm	cm			25,650	32,600	24,420	47,500	45,000	000'09
4	Urugan kembali bekas galian pondasi batu kali			Ę.	5,075	2,550	1,900	6,300	6,500	4,500
5 B.2	Lantai kerja beton tumbuk 1 : 3 : 5 Pekerjaan pondasi			ີ ຍ	183,550	303,000	179,390	173,155	250,000	160,000
<u>-</u>	Pondasi strauss ф 300 TP 1	73	20 00	Ę	571,465	597.000	551,540	361,360	483,200	486,945
7	Pondasi strauss \$400 TP 2	29	k 8	Ē	543,235	548.500		346,690	462,800	463,155
<u>~</u>	Pondasi strauss \$400 TP 3	8	ж 93	_E	529,120	548.500	515,360	339,355	452,600	451,260
4	Pondasi strauss \$400 TP 4	64	s g	ີE	529,120	548,500	515,360	339,355		
2	Pondasi strauss \$ 400 TP 5	64	kg	Ê	529,120	548,500	515,360	339,355	452,600	451,260
9	Pondasi strauss ф 300 TP 6	70	s 8	ÎE.	> 557,350	595,500	539,480	354,025	473,000	475,050
7	Pekerjaan beton plat poer TP 1	334	ķŝ	Ę	2,176,670	1,753.450	1,773,960	1,205,505	1,530,600	1,651,410
∞	Pekerjaan beton plat poer TP 2	289	kg	ິ≘	1,908,365	1,549,750	1,567,080	1,064,580	1,353,600	1,453,545
9	Pekerjaan beton plat poer TP 3	311	g g	ĘE.	1,932,665	1,688,500	1,619,150	1,075,110	1,394,800	1,513,560
10	Pekerjaan beton plat poer TP 4	253	笳	Ē	1,659,775	1,364,000	1,385,990	933,300	1,197,600	1,283,590
=	Pekerjaan beton plat poer TP 5	236	kg B	E.	1,579,790	1,301,400	1,317,650	891,735	1,139,800	1,216,185
12	Pekerjaan beton plat poer TP 6	376	k B	Ē	2,238,490	1,596,375	1,880,450	1,234,035	1,615,800	1,771,285
13	Pekerjaan aanstamping batu kali			~E	120,200	37.500	55,000	65,000	70,000	67,200
14 B.3	Pekerjaan pondasi batu kali 1pc : 5ps Pekerjaan sloof beton K-250			m,	140,490	95,226	119,650	125,000	135,000	122,600
							•			
	Sloof beton praktis tipe 150/200 Sloof pondasi	150	kg	m³	1,335,985	1,360,500	1,230,470	988,970	1,086,240	1,068,655
<u>_</u>	Sloof beton tipe SB 1 200/400	187	kg	E E	1,334,140	1,261.850	1,217,650	887,275	1,062,790	1,094,465

| The State of t

Š	o.			Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan PT TBP	Harga Satuan Tarumatex	Harga Satuan PT DYA
7	Sloof beton tipe SB 2 250/500	130	k B	m	1,028,245	1,001,300	953,875	706,720	836,995	842,545
3	Sloof beton tipe SB 3 200/400	202	8 8	Ę	1,404,750	1,317,200	1,277,980	923,985	113,820	1,153,965
4	Sloof beton tipe SB 4 200/400	190	χg	E.	1,348,250	1,272,900	1,229,700	894,600	1,072,980	1,106,355
5	Sloof beton tipe SB 5 250/500	111	Х 8	ີຍ	976,570	981,650	912,135	701,465	804,395	793,130
9	Sloof beton tipe SB 6 250/500	102	ş	ິ≘	900,230	899,900	844,585	640,980	744,660	734,450
	Sloof beton tipe SB 7 250/600	125	ж 8	E E	1,005,680	984,150	934,660	695,545	820,810	823,380
∞	Sloof beton tipe SB 8 200/400	200	90	Ê	1,395,320	1,309,800	1,269,920	919,075	1,107,000	1,146,020
6	Sloof beton tipe SB 9 300/400	142	ş	Ē	1,084,710	1.045,550	1,002,120	736,065	877,800	890,130
<u> </u>	0 Sloof beton tipe SB 10 200/300	315	ş	Ę.	1,946,270	1,747,000	1,741,290	1,211,040	1,506,380	1,608,780
	1 Sloof beton tipe SB 11 200/400	282	ķ	ີຍ	i,781,145	1,612,150	1,599,570	1,119,580	1,385,810	1,471,160
mi m	B.4 Pekerjaan kolom beton K-250									
	Kolom utama K-250			•						
_	Kolom tipe K 1 450/450/900	116	kg	Ē	1,152,415	950,650	898,260	668,945	790,010	836,920
٠,١	2 Kolom tipe K 2 300/300/200	154	窚	E .	1,659,825	1,310,300	1,201,915	937,560	1,058,600	1,143,360
(*)	3 Kolom tipe K 3 300/300/200	145	ж 89	Ē	1,659,825	1,310,300	1,201,915	937,560	1,058,600	1,143,360
4	1 Kolom tipe K 4 300/300	218	ķ	Ę	1,882,185	1,493,650	1,423,030	1,051,925	1,242,795	1,359,790
	5 Kolom tipe K 6 450/450	186	x _g	ົຣ	1,522,270	1,235.800	1,198,260	861,750	1,045,190	1,133,670
_	5 Kolom tipe K 7 450/450	288	х ,	Ē	2,002,220	1,611,900	1,608,315	1,111,160	1,392,005	1,538,120
	7 Kolom tipe K 8 250/250	310	ે. ક	E.	2,440,920	1,916.950	1,850,670	1,344,170	1,608,990	1,784,235
	8 Kolom tipe K 9 450/450	981	ж 8	Ē	1,522,345	1,235.850	1,198,295	861,790	1,045,220	1,133,705
	9 Kolom tipe K 10 450/450	288	kg	E .	2,002,220	1,611,900	1,608,315	1,111,160	1,392,010	1,538,120
_	10 Kolom tipe K 11 250/250	310	Хg	E H	2,440,920	1,916,950	1,850,670	1,344,170	1,608,990	1,784,235
	1 Kolom tipe K 13 250/300	159	ķg	E E	1,667,280	000'816'1 000	1,214,635	941,190	1,068,785	1,155,570
_	12 Kolom tipe K 15 250/250	195	kg	E.E.	1,899,875	1,496,650	1,388,380	1,063,010	1,218,000	1,328,275
_	3 Kolom tipe K 16 200/200	296	kg	ĘE	2,563,680	1,991.350	1,881,000	1,410,795	1,641,400	1,818,140
_	4 Kolom tipe K 17 450/450	142	kg	E E	1,321,580	1,077,800	1,024,285	757,555	898,275	962,210
	Kolom praktis									
	1 Kolom praktis 12/12	257.25	ş	E	1,926,365	1,875,500	1,740,380	1,333,700	1,523,650	1,680,140
<u></u>	 B.5 Pekerjaan balok beton K-250				_					-

GEDUNG SERBA GUNA YAYASAN SURYAKANTI, JL. CIMUNCANG, BANDUNG

Deordes 133 kg m³ 1,883,780 1,904,700 1,711,240 1,438,295 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Š.	Pekerjaan			Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan PT TBP	Harga Satuan Tarumatex	Harga Satuan PT DYA
Pekerjaan plate tungga dan bordes 133 kg m³ 1,273,873 1,058,350 985,645 755,225 Pekerjaan plate tungga dan bordes 134 kg m³ 1,509,140 1,207,200 1,095,530 893,320 1,309,410 1,207,200 1,095,530 893,320 1,309,410 1,207,200 1,095,530 893,320 1,309,410 1,207,200 1,248,290 986,230 1,309,410 1,207,200 1,248,290 986,230 1,309,410 1,207,200 1,248,290 1,	- 6	Ring balok 15/20	224.15	ў	£	1,883,780	1,904,700	1,711,240	1,438,295	1,507,110	1,656,180
Pekerjaan blat tangga dan bordes 133 kg m³ 1,273,875 1,058,350 985,645 755,225 Pekerjaan blat tangga dan bordes 134 kg m³ 1,509,140 1,207,200 1,095,530 893,320 Pekerjaan blat tangga dan bordes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 Pekerjaan blat tangga dan bordes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 Pekerjaan blanta fars Pekerjaan kolom berdes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 IN Kolom tipe K 1430/4309020 117 kg m³ 1,157,100 9924,300 671,380 Kolom tipe K 1430/4309020 115 kg m³ 1,157,100 9924,300 1,205,390 940,000 IN Kolom tipe K 1300/300200 115 kg m³ 1,537,460 1,240,300 1,205,390 940,000 IN Kolom tipe K 1300/300200 118 kg m³ 1,537,460 1,240,300 1,205,390 S6,535 Kolom tipe K 1940/450 IN R M³ 1,537,460 1,240,300 1,392,400 1,065,455 Kolom tipe K 1040/450 IN R M³ 1,305,865 1,206,530 IN 1,333,700 IN 1,305,300 IN R IN R IN R IN R IN R IN R IN R IN	7.0										
Pekerjaan balok bordes 134 kg m³ 1,509,140 1,207,200 1,095,530 893,320 Tangga tipe II	-	Pekerjaan plat tangga dan bordes	133	엶	E.	1,273,875		985,645	755,225	865,400	1,036,695
Pekerjaan plat tungga dan bordes 172 kg m³ 1,786,720 1,458,200 1,442,820 986,230 1 Pekerjaan balok bordes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 1 Pekerjaan balok bordes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 1 Pekerjaan balok bordes 2.50	7	Pekerjaan balok bordes Tangga tipe II	134	ж 99	Ē	1,509,140	1,207,200	1,095,530	893,320	966,600	1,211,810
Pekerjaan balok bordes 172 kg m³ 1,687,930 1,349,700 1,248,290 986,230 Pekerjaan lantai atas Pekerjaan kolom beton K-250 Kolom utama K-250 Kolom tipe K 1300/300/200 117 kg m³ 1,157,100 954,300 902,270 671,380 Kolom tipe K 3300/300/200 117 kg m³ 1,664,325 1,277,150 1,125,730 940,000 117 kg m³ 1,664,325 1,277,150 1,125,730 940,000 117 kg m³ 1,277,460 1,240,300 1,346,395 Kolom tipe K 4300/300 219 kg m³ 1,237,460 1,240,300 1,346,395 Kolom tipe K 950/450 188 kg m³ 1,337,003 1,243,200 1,306,310 866,655 Kolom tipe K 10450/450 188 kg m³ 1,305,865 1,066,250 1,013,350 1,346,395 Kolom tipe K 10450/450 196 kg m³ 1,904,380 1,496,650 1,013,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,904,380 1,496,650 1,013,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,904,380 1,496,650 1,013,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,904,380 1,496,650 1,013,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,904,380 1,496,650 1,013,350 1,065,455 Kolom tipe K 11 450/450 190 kg m³ 1,305,390 1,066,590 1,013,345 1,496,590 1,013,34	-	Pekerjaan plat tangga dan bordes	242	х 9	Ę	1,786,720		1,423,825	1,021,730	1,236,000	1,468,830
Pekerjaan lantal atas Pekerjaan kolom beron K-250 Pekerjaan kolom kol	7	Pekerjaan balok bordes	172	х 9	m³	1,687,930		1,248,290	986,230	1,095,800	1,362,480
Pekerjaan kolom beton K-250 Kolom tipe K 1 4504500 Kolom tipe K 1 450450 Kolom tipe K 1 450450 Kolom tipe K 1 2507200 Kolom tipe K 1 250720 Kolom tipe K 1 250720 Kolom tipe K 1 2	ن						-			-	
Kolom tipe K 1 450/4500	<u>၂</u>										
Kelom tipe K 1 450/450/900 117 kg m² 1,157,100 994,300 902,270 671,380 Kelom tipe K 2 300/300/200 155 kg m³ 1,664,525 1,313,950 1,205,390 940,000 145 kg m³ 1,617,475 1,277,150 1,165,730 915,530 Kelom tipe K 3 90/300/200 219 kg m³ 1,884,905 767,150 1,120,300 940,000 188 kg m³ 1,527,460 1,240,350 1,204,360 864,385 Kelom tipe K 9 450/450 188 kg m³ 1,307,865 1,204,360 1,206,310 866,655 Kelom tipe K 10 450/450 196 kg m³ 1,305,865 1,066,320 1,013,350 1,045,295 1,066,320 1,013,350 1,065,455 1,066,320 1,013,350 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,360 1,065,455 1,066,320 1,013,345 1,066,320 1,013,345 1,066,320 1,013,345 1,066,320 1,013,345 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,065,455 1,066,320 1,013,345 1,066,320 1,013,345 1,049,380 1,046,3	•	Noiom utama N-250		,							
Kolom tipe K 2 300/300/200 155 kg m³ 1,664,525 1,313,950 1,205,930 940,000 Kolom tipe K 3 300/300/200 145 kg m³ 1,617,475 1,277,150 1,165,730 915,550 Kolom tipe K 4 300/300 219 kg m³ 1,817,405 1,204,360 1,624,380 Kolom tipe K 4 500/450 188 kg m³ 1,527,460 1,204,360 1,204,380 Kolom tipe K 9 450/450 188 kg m³ 1,527,460 1,204,360 1,346,630 Kolom tipe K 10 450/450 188 kg m³ 1,305,865 1,066,250 1,013,350 749,295 Kolom tipe K 11 250/250 196 kg m³ 1,305,865 1,066,250 1,013,340 1,065,455 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,013,440 1,065,455 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,013,345 749,250 Kolom tipe K 17 450/450 10	-	Kolom tipe K 1 450/450/900	117	X B	E	1,157,100		902,270		793,400	840,875
Kolom tipe K 3300/300/200 145 kg m³ 1,617,475 1,277,150 1,165,730 915,530 Kolom tipe K 4 300/300 219 kg m³ 1,617,475 1,240,350 1,427,055 1,054,360 Kolom tipe K 4 300/300 188 kg m³ 1,527,460 1,240,350 1,346,330 Kolom tipe K 9 250/250 188 kg m³ 2,445,655 1,920,650 1,346,630 Kolom tipe K 10 250/250 188 kg m³ 1,537,405 1,243,200 1,346,630 Kolom tipe K 10 250/250 196 kg m³ 1,305,865 1,066,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,304,880 1,496,650 1,313,40 Kolom tipe K 12 250/250 196 kg m³ 1,904,880 1,496,650 1,013,34 749,250 Kolom tipe K 17 450/450 196 kg m³ 1,306,300 1,013,34 749,520 Kolom tipe K 17 450/450 196 kg m³ 1,306,300 1,066	7	Kolom tipe K 2 300/300/200	155	ķ	Ē	1,664,525	_	1,205,930		1,062,000	1,147,325
Kolom tipe K 4 300/300 219 kg m³ 1,886,905 767,350 1,427,055 .,054,380 Kolom tipe K 6 450/450 188 kg m³ 1,527,460 1,240,350 1,240,360 864,385 Kolom tipe K 9 250/250 311 kg m³ 2,445,655 1,920,650 1,854,700 1,346,630 Kolom tipe K 10 450/450 188 kg m³ 1,531,705 1,243,200 1,206,310 866,655 Kolom tipe K 10 450/450 196 kg m³ 1,904,586 1,496,650 1,392,400 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,667,315 787,100 1,214,650 941,210 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,013,545 749,520 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,740,380 1,065,455 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,740,380 1,333,700 <td>٣</td> <td>Kolom tipe K 3 300/300/200</td> <td>145</td> <td>kg</td> <td>Ē</td> <td>1,617,475</td> <td>_</td> <td>_</td> <td>_</td> <td>1,028,000</td> <td>1,107,675</td>	٣	Kolom tipe K 3 300/300/200	145	kg	Ē	1,617,475	_	_	_	1,028,000	1,107,675
Kolom tipe K 6 450/450 188 kg m³ 1,527,460 1,240,350 1,204,360 864,385 Kolom tipe K 8 250/250 311 kg m³ 2,445,655 1,920,650 1,854,700 1,346,630 Kolom tipe K 9 250/250 188 kg m³ 1,531,705 1,243,200 1,206,310 866,655 Kolom tipe K 10 450/450 196 kg m³ 1,904,580 1,996,650 1,913,350 1,065,455 Kolom tipe K 11 250/250 196 kg m³ 1,667,315 787,100 1,214,650 941,210 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,065,455 Kolom tipe K 17 450/450 140 kg m³ 1,904,580 1,496,650 1,013,545 749,520 Kolom tipe K 17 450/450 160 kg m³ 1,904,580 1,066,500 1,013,545 749,520 Kolom praktis 257.25 kg m³ 1,926,365 1,740,380 1,740,380 1,333,700 Balok induk Balok tipe 2B1 250/500 161 kg m³ 2,407,975 1,283,350 <	4	Kolom tipe K 4 300/300	219	Кg	Ę	1,886,905		_		1,246,200	1,363,760
Kolom tipe K 9 250/250 311 kg m³ 2,445,655 1,920,650 1,884,700 1,346,630 Kolom tipe K 9 450/450 188 kg m³ 1,531,705 1,206,320 1,013,350 749,295 Kolom tipe K 10 450/450 140 kg m³ 1,305,865 1,066,250 1,013,350 749,295 Kolom tipe K 11 250/250 196 kg m³ 1,904,580 1,496,650 1,214,650 941,210 Kolom tipe K 13 250/250 196 kg m³ 1,904,580 1,496,650 1,013,345 749,520 Kolom tipe K 13 250/250 196 kg m³ 1,904,580 1,496,650 1,013,445 749,520 Kolom tipe K 17 450/450 140 kg m³ 1,904,580 1,906,500 1,013,545 749,520 Kolom praktis 257.25 kg m³ 1,926,365 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380 1,740,380	2	Kolom tipe K 6 450/450	188	g	้อ	1,527,460	_			1,050,200	1,139,600
Kolom tipe K 10 450/450 188 kg m³ 1,531,705 1,243,200 1,206,310 866,655 Kolom tipe K 10 450/450 140 kg m³ 1,305,865 1,066,250 1,013,330 749,295 Kolom tipe K 11 250/250 159 kg m³ 1,904,580 1,496,650 1,392,400 1,065,455 Kolom tipe K 12 250/250 196 kg m³ 1,904,580 1,496,650 1,214,650 941,210 Kolom tipe K 17 450/450 140 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis 257.25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Balok tipe 2B1 250/500 197 kg m³ 2,407,975 1,338,500 1,740,380 1,740,380 1,740,380 Balok tipe 2B3 250/500 161 kg m³ 2,364,955 1,283,.50 1,710,910 957,915 Balok tipe 2B3 250/500 168 kg m³ 2,2407,975 1,225,100 1,572,970	9	Kolom tipe K 3 250/250	311	Å	Ę	2,445,655	_		_	1,612,400	1,788,215
Kolom tipe K 10 450/450 140 kg m³ 1,305,865 1,066,250 1,013,350 749,295 Kolom tipe K 11 250/250 196 kg m³ 1,904,580 1,496,650 1,392,400 1,065,455 Kolom tipe K 13 250/20 159 kg m³ 1,904,580 1,496,650 1,214,650 941,210 Kolom tipe K 17 450/450 196 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis Kolom praktis 257,25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B1 250/500 161 kg m³ 2,364,955 1,283,.50 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	7	Kolom tipe K 9 450/450	188	kg	E .	1,531,705		1,206,310		1,052,000	1,141,610
Kolom tipe K 11 250/250 196 kg m³ 1,904,580 1,496,650 1,392,400 1,065,455 Kolom tipe K 13 250/300 159 kg m³ 1,667,315 787,100 1,214,650 941,210 Kolom tipe K 13 250/250 196 kg m³ 1,904,580 1,496,650 1,214,650 941,210 Kolom tipe K 17 450/450 140 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis Kolom praktis L 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis L 1,306,290 1,066,500 1,013,545 749,520 Rolom praktis L 1,306,290 1,266,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 L L 1,226,365 1,328,500 1,740,380 1,333,700 Balok tipe 2B1 250/500 L R m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/500 L R L 2,364,955 1,210,910 937,140 <	∞	Kolom tipe K 10 450/450	140	кв	ີຣ	1,305,865	_	1,013,350		888,800	951,290
Kolom tipe K 13 250/300 159 kg m³ 1,667,315 787,100 1,214,650 941,210 Kolom tipe K 15 250/250 196 kg m³ 1,904,580 1,496,650 1,392,400 1,065,455 Kolom tipe K 17 450/450 140 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis Kolom praktis 1,306,290 1,066,500 1,013,545 749,520 Rolom praktis 1,306,290 1,266,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 257.25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Balok tipe 2B1 250/500 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/500 161 kg m³ 2,364,955 1,225,100 1,572,970 879,915	6	Kolom tipe K 11 250/250	961	kg	ີຣ	1,904,580	1		_	1,221,400	1,332,240
Kolom tipe K 15 250/250 Kolom tipe K 15 250/250 196 kg m³ 1,904,580 1,496,650 1,392,400 1,065,455 Kolom tipe K 17 450/450 140 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis Kolom praktis 1,926,365 1,875,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 257.25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Balok tipe 2B1 250/500 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/500 161 kg m³ 2,364,955 1,210,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	=		159	kg	Ē	1,667,315				1,068,800	1,155,590
Kolom tipe K 17 450/450 140 kg m³ 1,306,290 1,066,500 1,013,545 749,520 Kolom praktis Kolom praktis 257.25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 Balok tipe 2B1 250/500 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B2 200/400 161 kg m³ 2,364,955 1,283,50 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	=	Kolom tipe K 15 250/250	196	kg	Ē	1,904,580				1,221,400	1,332,240
Kolom praktis Kolom praktis Kolom praktis L/326,365 1,875,500 1,740,380 1,333,700 Recigan balok beton K-250 Pekerjaan balok beton K-250 197 Ranok induk Ranok induk 197 Ranok induk 197 Ranok induk 1,338,500 1,689,550 950,820 Balok tipe 2B1 250/500 161 Rg m³ 2,364,955 1,283,550 1,710,910 937,140 Balok tipe 2B3 250/500 168 Rg m³ 2,271,530 1,225,100 1,572,970 879,915	12		140	kg	Ē	1,306,290	_			888,980	951,495
Kolom praktis 12/12 257.25 kg m³ 1,926,365 1,875,500 1,740,380 1,333,700 Pekerjaan balok beton K-250 Balok tipe 2B1 250/500 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B2 200/400 161 kg m³ 2,364,955 1,283,350 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915		Kolom praktis									
Pekerjaan balok beton K-250 Pekerjaan balok beton K-250 Pekerjaan balok beton K-250 Pekerjaan balok inge 2B1 250/500 1,589,550 950,820 Balok tipe 2B1 250/500 161 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/500 161 kg m³ 2,364,955 1,283,350 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	-	Kolom praktis 12/12	257.25		В,	1,926,365				1,523,650	1,680,140
Balok tipe 2B2 250/500 197 kg m³ 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/400 161 kg m³ 2,364,955 1,283,350 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	<u>ਂ</u>	Pekerjaan balok beton K-250			-						
Balok tipe 2B3 250/500 197 kg m² 2,407,975 1,338,500 1,689,550 950,820 Balok tipe 2B3 250/500 161 kg m³ 2,364,955 1,283,350 1,710,910 937,140 Balok tipe 2B3 250/500 168 kg m³ 2,271,530 1,225,100 1,572,970 879,915		Dailon III alia			-			·			
Balok tipe 2B3 250/400 161 kg m³ 2,364,955 1,283,350 1,710,910 937,140 1810 tipe 2B3 250/500 1,572,970 879,915		Balok tipe 2B1 250/500	197	ձ	E	2,407,975				1,111,200	1,209,260
168 kg m³ 2,271,530 1,225,100 1,572,970 879,915	7		191	X B	E.	2,364,955				1,042,400	1,126,415
	<u></u>	Balok tipe 2B3 250/500	168	kg	E .	2,271,530				1,012,600	1,094,275

GEDUNG SERBA GUNA YAYASAN SURYAKANTI, JL. CIMUNCANG, BANDUNG

ż	Pekeriaan			Satuan	Harga Satuan	Harga Satuan	Harga Satuan	Harga Satuan	Harga Satuan	Harga Satuan
	•				BOW	Suryakanti	Indramayu	PT TBP	Tarumatex	PTDYA
4	Balok tipe 2B4 250/500	195	줆	Ē	2,398,565	1,326,350	1,681,510	945,930	1,104,400	1,201,330
'n	Balok tipe 2B7 250/5/10	325	k g	Ê	3,010,215	1,813,850	2,204,110	1,263,780	1,546,400	1,716,780
9	Balok tipe 2B8 250/500	275	Ŗ	E.	2,774,965	1,626,350	2,003,110	1,141,530	1,376,400	1,518,530
7	Balok tipe 2B10 250/500	356	ъ Э	_ E	3,156,070	1,930,000	2,328,730	1,339,575	1,651,800	1,839,695
∞	Balok tipe 2B12 250/500	289	30 30	ີຍ	2,840,835	1,678,850	2,059,390	1,175,760	1,424,000	1,574,040
0,	Balok tipe 2B14 250/500	134	х	Ę	2,111,560	1,097,500	1,436,290	796,785	897,000	959,465
01	Balok tipe 2B16 250/500	109	ğ	Ę	1,993,935	1,003,350	1,335,790	735,660	812,000	860,340
=	Balok tipe 2B17 250/500	117	꼆	Ę	2,157,935	1,118,250	1,534,030	829,560	892,800	951,955
12	Balok tipe 2B18 200/400	193	Х 00	Ę.	2,515,515	1,403,850	1,839,550	1,015,380	1,151,200	1,253,295
2	Balok tipe 2B 20 250/500	219	ж 8	Ë	2,511,485	1,416,350	1,777,990	1,004,610	1,186,000	1,296,490
7	Balok tipe 2B 21 250/500	209	Х В	Γ̂Ε	2,464,435	1,378,850	1,737,790	980,160	1,152,000	1,256,840
15		166	χ	Ē	2,262,120	1,217,600	1,564,930	875,025	1,005,800	1,086,345
91	Balok tipe 2B 23 250/500	171	ъ 9	ີ E	2,285,645	1,236,350	1,585,030	887,250	1,022,800	1,106,170
11	Batok tipe 2B 24 250/500	121	ķ	ĘE	2,059,805	1,056,350	1,392,070	268,697	859,600	915,850
<u>~</u>	Balok tipe 2B 26 200/400	425	X C)	Ę	3,607,075	2,273,250	2,772,190	1,582,620	1,940,000	2,173,175
61	Balok tipr 2B 28 200/400	201	ž B	ີ∈	2,553,155	1,433,250	1,871,710	1,034,940	1,178,400	1,285,015
20	Balok tipe 2B 29 200/400	191	å	e E	2,364,955	1,283,250	1,710,910	937,140	1,042,400	1,126,415
21	Balok tipe 213 31 300/600	991	Α. 5	ີເ	2,182,435	1,164,350	1,460,200	828,140	972,000	1,048,570
22	Balok tipe 213 34 250/500	104	30	໌ຣ	2,096,770	1,069,500	1,481,770	277,775	848,600	900,410
23	Balok tipe 2B 35 300/600	132	ş	Ę	2,022,465	1,036,850	1,323,525	745,010	856,400	913,760
24		152	kg	Ē	2,276,960	1,219,300	1,614,730	888,275	992,435	1,069,090
	Balok anal:									
_	Balok tipe 2B5 200/400	239	Ŗ	Ē	2,731,945	1,575,750	2,024,470	1,127,850	1,307,600	1,435,685
7	Balok tipe 2B6 200/400	194	껆	E E	2,520,220	1,407,000	1,843,570	1,017,825	1,154,600	1,257,260
c	Balck tipe 2B9 200/400	266	Х 99	Ē	2,858,980	1,677.000	2,133,010	1,193,865	1,399,400	1,542,740
4	Balok tipe 2B11 200/400	321	kg	Ē	3,117,755	1,883,250	2,354,110	1,328,340	1,586,400	1,769,815
S	Balok tipe 2B13 200/400	161	გ	Ę.	2,364,955	1,283,250	1,710,910	937,140	1,042,400	1,126,415
9	Balok tipe 2B15 200/400	193	kg	ĘE	2,515,515	1,403,250	1,839,550	1,015,380	1,151,200	1,253,295
7	Balok tipe 2B19 250/500	157	кg	ÇEI	2,219,775	1,183,850	1,528,750	853,020	975,200	1,050,660

GEDUNG SERBA GUNA YAYASAN SURYAKANTI, JL. CIMUNCANG, BANDUNG

			Ì							
S. O	o. Pekerjaan			Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan FT TBP	Harga Satuan Tarumatex	Harga Satuan PT DY A
oc	Balok tipe 2B 25 200/400	230	kg	н	2,586,090	1,459,500	1,899,850	1,052,055	1,202,200	1,312,770
5	9 Balok tipe 2B 27 200/400	091	ķ	Ê	2,360,250	1,279,500	1,706,890	934,695	1,039,000	1,122,450
<u> </u>	10 Balok tipe 2B 30 200/400	182	kg	m ₂	2,463,760	1,362,000	1,795,330	988,485	1,113,800	1,209,680
_	11 Balok tipe 2B 32 200/400	174	ş	Ē	2,426,120	1,332,000	1,763,170	968,925	1,086,600	1,177,960
<u> </u>	12 Balok tipe 2B 33 200/400 Ring balok	169	ş	En .	2,402,595	1,313,250	1,743,070	956,700	1,069,600	1,158,135
- (Ring balok 15/20	224.15	ğ	E.	1,883,780	1,904,700	1,711,240	1,438,295	1,507,110	1,656,180
ن 	C.3 Pekerjaan piat lantai beton K-250									
	Plut lantai tipe S1 slab t.120	72	ş	Ē	1,756,140	828,800	1,090,985	605,870	667,180	666,020
7	Plat lantai tipe S2 slab t.140	73	X 8	Ê	1,668,025	765,600	987,510	555,870	621,800	618,590
n	Plat kanopi slab t.120	104	kg	e E	2,030,440	1,043,250	1,325,350	748,410	865,400	897,180
4	Plat parapet beton	284	K B	Ē	2,726,780	1,587,550	1,920,310	1,110,270	1,368,600	1,484,000
Ċ	.4 Tangga		•							
	Tangga tipe l			,						
_	Pekerjaan plat tangga dan bordes	133	κg	Ē	1.273,875	1,058,350	985,645	755,225	865,400	1,036,695
.,	2 Pekerjaan balok bordes	134	kg	ິຍ	1,509,140	1,207,200	1,095,530	893,320	966,600	1,211,810
	Tangga tipe II			,						
_	l Pekerjaan plat tangga dan bordes	242	ş	Ē	1,786,720	1,458.200	1,423,825	1,021,730	1,236,000	1,468,880
	2 Pekerjaan balok bordes	172	흅	ີຂ	1,687,930	1,349,700	1,248,290	986,230	1,095,800	1,362,480
	D. Pekerjaan Lantai atap dan atap				- ,					
Ω	D.1 Pekerjaan kolom beton K-250									
	Kolom utama									
_	1 Kolom tipe K 2 300/300/200	166	გ	ີ E	1,716,280	1,365,000	1,250,150	966,895	1,099,400	1,190,940
''	2 Kolom tipe K 3 300/300/200	166	ĸ	£EI	1,716,280	1,365,000	1,250,150	966,895	1,099,400	1,190,940
	3 Kolom tipe K 5 300/300/200	166	Kg 8	Ē	1,716,280	1,365,000	1,250,150	966,895	1,099,400	1,190,940
	4 Kolom tipe K 13 300/200	318	kB	E.	2,667,190	2,092,500	1,969,440	1,464,585	1,716,230	1,905,370
	5 Kolom tipe K 14 300/300	204	kg	Em,	1,973,810	1,560,100	1,439,065	1,101,905	1,262,000	1,378,935
	6 Kolom tipe K 15 200/200 Kolom praktis	318	X ₈	E .	2,667,190	2,092,500	1,969,440	1,464,585	1,716,200	1,905,370
	1 Kolom praktis 12/12	257.25	ьg	e —	1,926,365	1,875,500	1,740,380	1,333,700	1,523,650	1,680,140

GEDUNG SERBA GUNA YAYASAN SURYAKANT", JL. CIMUNCANG, BANDUNG

Z o	Pekerjaan			Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan PT TBP	Harga Satuan Tarumatex	Harga Satuan PT DYA
D.2	Pekerjaan balok beton K-250		•							
_	Balok tipe AB16 200/500	130	kg_	Ę	2,190,810	1,151,750	1,549,110	1,334,700	1,415,000	1,480,090
7	Balok tipe AB18 200/500	136	80	E	2,190,810	1,151.750	1,549,110	1,334,700	1,415,000	1,480,090
<u>~</u>	Balok tipe AB9 200/300	213	X B	ີແ	2,626,590	1,495,550	1,942,260	1,564,270	1,716,400	1,830,640
4	Balok tipe RB1 300/600	126	λ g	Ē	1,994,235	1,017,900	1,299,405	1,220,340	1,326,000	1,379,970
'n	Balok tipe RB2 200/400	142	ъ 9	ີ E	2,275,560	.1,215,950	1,634,530	1,380,685	1,467,800	1,541,080
9	Balok tipe RB3 250/500	66	kg	ິຍ	1,946,885	969,100	1,295,590	1,201,210	1,268,000	1,310,690
7	Balok tipe RB6 300/600	134	kg	ĘE	2,111,560	1,101,350	1,436,290	1,286,780	1,387,000	1,449,465
∞	Balck tipe RB7 400/600	26	ķ	Ê	1,776,220	853,850	1,075,615	1,101,445	1,192,800	1,226,320
6	Balok tipe RB8 200/400	182	kg	Ê	2,463,760	1,367,000	1,795,330	1,478,485	1,603,800	1,699,680
2	Balok tipe RB9 200/300	221	kg	Ê	2,695,820	1,547,000	2,015,940	1,602,415	1,757,000	1,877,335
=	Balok tipe RB10 250/500	127	x g	ѓЕ	2,078,625	1,075,000	1,408,150	1,269,670	1,363,200	1,421,710
7		160	kg	ີ ອ	2,233,890	1,199,500	1,540,810	1,350,350	1,475,400	1,552,555
13	Balok tipe RB13 250/500	146	kg	٦ E	.2,266,090	1,212,200	1,613,430	1,373,820	1,469,400	1,543,530
14	Balok tipe RB14 250/500	105	kg	Ē	1,975,115	992,000	1,319,710	1,215,880	1,288,400	1,334,480
15	Balok tipe RB15 250/500	158	kg	ີຣ	2,224,480	1,192,000	1,532,770	1,345,460	1,468,600	1,544,625
16	Balok tipe atap tangga B1 200/400	991	kg	ີຂ	2,388,480	1,306,750	1,731,010	1,439,365	1,549,400	1,636,240
17	Balok tipe atap tangga B2 200/400	127	A B	ີ∈	2,204,985	1,306,750	1,574,230	1,344,010	1,416,800	1,481,605
18	Balok tipe atap tangga B3 L. 200/350/350 Balok anak	091	kg	Ę	2,175,540	005,621,1	1,461,490	1,314,845	1,449,800	1,523,945
	Balok tipe RB4 200/400	241	κg	E H	2,741,355	1,589,950	2,032,510	1,622,740	1,804,400	1,933,615
7	Balok tipe RB5 200/400	181	kg	E.	2,459,055	1,363,350	1,791,310	1,476,040	1,600,400	1,695,715
m	Balok tipe RB12 200/400	154	ķg	Ê	2,332,020	1,261,300	1,682,770	1,410,025	1,508,600	1,588,660
4	Balok tipe RB17 200/400	198	kg	Ē	2,539,040	1,427,500	1,859,650	1,517,605	1,658,200	1,763,120
_	Ring balok									
-	Ring balok 15/20	224.15	ž g	E	1,883,780	1,904,700	1,711,240	1,438,295	1,507,110	1,656,180
	D.3 Pekerjaan plat dak beton K-250									
_	Plat dak tipe S1 slab t.120	73	k g	re —	2,280,965	1,175,750	1,790,940	1,406,160	1,373,200	1,358,945
	-				-					•

GEDUNG SERBA GUNA YAXASAN SURYAKANTI, JI.. CİMUNCANG, BANDUNG

Ž	Pekcrjaan			Satuan	Harga Satuan BOW	Harga Satuan Suryakanti	Harga Satuan Indramayu	Harga Satuan PT TBP	Harga Satuan Tarumatex	Harga Satuan PT DYA
7	Plat dak tipe 52 slab t. 140	6/	kg	E E	2,309,195	1,196,250	1,815,060	1,420,830	1,393,600	1,382,735
~	Plat kanopi slab t.120	901	ж 8	Ē	2,436,230	1,297,500	1,923,600	1,486,845	1,485,400	1,489,790
4	Plat dak tipe S1 slab t.120 (atap tangga)	8	였	ĘE	2,318,605	1,203,750	1,823,100	1,425,720	1,400,400	1,390,665
ν.	Plat Jak tipe S2 slab t. 140 (atap tangga)	55	kg	~E	2,196,275	1,106,250	1,718,580	1,362,150	1,312,000	1,287,575
9		202	g	Ē	2,340,970	1,292,100	1,590,670	1,399,780	1,579,800	1,648,870
D.4	Pekerjaan atap baja				-	٠				
_	Kolom pedestal tipe 450/450	204	ъ 9	Ē	1,535,210	1,254,900	1,238,135	867,930	1,076,380	1,171,505
7	Kolom pedestal tipe 275/450	231	х 9	ີ່E	1,814,875	1,356,200	1,416,295	1,015,020	1,232,500	1,350,435
6	Kolom pedestal tipe 200/300	273	꼆	ີຂ	2,433,840	1,637,700	1,778,610	1,343,000	1,55	1,716,695
4	Kuda-kuda tipe K1 Baja IWF 350.175.7.11			ķ	6,940	4,981	6,141			5,500
2	Kuda-kuda tipe K2 Baja IWF 350.175.7.11			Kg B	6,940					
9	Kuda-kuda tipe K3 Baja IWF 250.125.6.9			kg	6,940		6,141			
7	Kuda-kuda tipe K4 Baja IWF 250.125.6.9			kg	6,940		6,141	_	4,250	5,500
∞	Jurai tipe J1 Baja IWF 350.175.7.11			ķ	6,940		6,141			
6	Kolom dudukan kuda-kuda Baja IWF 350.175 7.11			X 8	6,940			7,900		
10	Kolom dudukan kuda-kuda Baja IWF 250.125.6.9			х g	6,940	-	6,141	7,900		
=	Baja pengaku kuda-kuda IWF 250.125'6.9			kg	6,940		6,141	7,900		
17	Sambungan baja IWF 350.175.7.11 (dibelah)			х 8	6,940	4,981	6,141	7,900		-
=	Sambungan baja IWF 250.125.6.9 (dibelah)			X S	6,940			7,900		
4	Plat sambungan t, 12 mm			kg g	6,940			7,850		
15	Plat pengaku t. 10 mm			х g	6,940		6,141	7,850		
16	Plat ikat angin t. 10 mm			ж g	6,940		6,141	7,850		
17	Plat dudukan gording t. 6 mm			匆	6,940			7,850		
18	Siku L. 60.60.6 penahan gording			장 89	6,940			7,650		
19	Gording C. 150.65.20.3,2			kg	6,940			7,850		
20	Plat sambungan M.19			ρ	3,500	3,500	3,500			
21	Anker baut (anschor bolt M.19)			ξį	000'6		000'6	000'6		000'6
22	Baut siku gording ϕ 12			μ̈́	2,000	2,000	2,000	2,000	2,000	
23	Base plat t. 19 mm			kg	6,940	1 4,950	6,141	7,850	4,250	
24	Trekstang			к	6,940	0 4,750	6,141			
25	Ikat angin ф 16			х g	6,940					
56	Wartelmoor spanskrup 16			뜐	20,000	20.000	20,000	20,000	000002	20,000

Daftar Analisis Pekerjaan Struktur B2ton (BOW)

Ž	Uraian pekerjaan	Satuan	Satuan Harga beton/m³		Fulangan	<u></u>		Bekisting	60	Perancah		Upah	h	Harga satuan pekerjaan
		_	1	kg/m³	Harga/kg	fumlah.	m ²	Harga/m²	Jumlah	Harga/m³ beton	Beton	Tulangan	Bekisting+perancalı	(Rp)
			(Rp)		(Rp)	(Rp)		(Rp)	(Rp)	(Rp)	(Rp)	(Rp)	(Rp)	(15)=(4)+(7)+(10)+(11)
<u> </u>	(2)	(3)	. (4)	(5)	(9)	(9)x(5). (2)	<u>@</u>	(6)	(10)=(8)×(6)	(11)	(12)	(13)	(14)	+(12)+(13)+(14)
<u> </u>	Lantai bawah									-				
	Sloof praktis, beton K-250	ີ =	139,000		3,580			14,800	•		89,000	1,125	8,775	•
	Shoof beton praktis tipe 150/200	Ē	139,000	150	3,580	537,000	17.06	14,800	252,516		89,000	168,750	149,718	1,335,984
.2	Stoof pondasi, beton K-250	Ē	139,000		3.580			14,800			89,000	1,125	8,775	
	Sloof beton tipe SBI 200/400	ê	139,000	187	3,580	669,460	9.60	14,800	142,071		89,000	210,375	84,235	1,334,141
	Sloof beton tipe SB2 250/500	Ē	139,000	130	3,580	465,400	8.00	14,800	118,395		89,000	146,250	70,197	1,028,243
	Stoof beton tipe SB3 200/400	ın,	139,000	202	3,580	723,160	9.60	14,800	142,092		89,000	227,250	84,247	1,404,749
	Sloof beton tipe SB4 200/400	e .	139,000	190	3,580	680,200	9.60	14,800	142,066		89,000	213,750	84,232	1,348,248
	Sloof beton tipe SB5 250/500	Ê	139,000	111	3,580	397,380	9.60	14 800	142,077		89,000	124,875	84,238	076,570
	Sloof beton tipe SB6 250/500	Ē	139,000	102.5	3,580	366,950	8.06	14,800	119,258		89,000	115,313	70,709	900,229
	Sloof beton tipe SB7 250/600	Ē	139,000	125	3,580	447,500	8.04	14.800	118,999		89,000	140,625	70,555	1,005,679
	Sloof beton tipe SB8 200/400	,E	139,000	200	3,580	716,000	9.63	14,800	142,080		89,000	225,000	84,240	1,395,320
	Sloof beton tipe SB9 300/400	ີເ	139,000	142	3,580	508,360	8.00	14,800	118,398		89,000	159,750	70,199	1,084,707
	Slagf beton tipe SB10 200/300	Ē	000,051	315	3,580	1,127,700	10.02	14,800	148,280		89,000	354,375	87,916	1,946,270
	Sloof beton tipe SB11 200/400	Ē	139,000	282	3,580	1,009,560	9.60	14,800	142,388		89,000	317,250	84,244	1,781,142
									-					

Daftar Analisis Pekerjaan Struktur Beton (BOW)

Š	Uraian pekerjaan	Satuan	Satuan Harga beton/m		Tulangan			Bekisting		Perancah		Upah		Harga satuan pekerjaan
				kg/m³	Harga/kg	Jumlah	²m	Harga/m²	Jumlah	Harga/m³ beton	Beton	Tulangan	Tulangan Bekisting+perancah	(Rp)
_£	(2)	(3)	(Rp)	(5)	(Rp)	(Rp) (7)=(5)x(6)	8	(Rp)	(Rp) (10)=(8)x(9)	(Rp)	(Rp)	(Rp)	(Rp) (14)	(15)=(4)+(7)+(10)+(11) +(12)+(13)+(14)
	Lantai atas													
<u>-</u> :	Kolom utama K-250	Ē	139,000		3,580			29,600	-		89,000	1,125	17.550	
	Kolom tipe K1 450/450/900	ĘEE	139,000	117	3,580	418,860	8.03	29,600	237,688		89,000	131,625	140,927	1,157,100
	Kolom tipe K2 300/300/200	Ē	139,000	155	3,580	554,000	15.00	29,600	444,000		89,000	174,375	263,250	1,664,525
	Kolom tipe K3 300/300/200	<u>_</u> E	139,000	145	3,580	519,100	15.00	29,600	444,000		89,000	163,125	263,250	1,617,475
	Kolom tipe K4 300/300	E.	139,000	219	3,580	784,020	13.3.3	29,600	394,568		89,000	246,375	233,942	1,886,905
	Kolom tipe K6 450/450	, II	139,000	188	3,580	673,040	8.80	29,600	260,480		89,000	211,500	154,440	1,527,460
	Kolom tipe K8 250/250	Ē	139,000	311	3,580	1,113,380	16.00	29,600	473,600		89,000	349,875	280,800	2,445,655
	Kolom tipe K9 450/450	Ē	139,000	188	3,580	673,040	8.80	29,600	263,144		89,000	211,500	156,020	1,531,704
	Kolom tipe K10 450/450	Ē	139,000	140	3,580	501,200	8.89	29,600	263,144		89,000	157,500	156,020	1,305,864
	Kolom tipe K11 250/250	Ē	139,000	961	3,580	701,680	16.00	29,600	473,600		89,000	220,500	280,800	1,904,580
	Kolom tipe K13 250/300	Ē	139,000	159	3,580	569,220	14.65	29,600	433,936		89,000	178,875	257,283	1,667,314
	Kolom tipe K15 250/250	Ē	139,000	961	3,580	701,680	16.00	29,600	473,600		89,000	220,500	280,800	1,904,580
	Kolom tipe K17 450/450	Ē	139,000	140	3,580	501,200	8.90	29,600	263,410		89,000	157,500	156,177	1,306,288
7	Kolom praktis	m ³	139,000		3,580			14,800			89,000	1,125	8,775	
	Kotom praktis 12/12	Ē	000'6€1	139,000 257.25	3,580	920,955	20.70	14,800	306,360		89,000	289,406	181,643	1,926,364

Daftar Analisis Pekerjaan Struktur Beton (BOW)

2	Urajan nekerjaan	Satuan	Satuan Harga beton/m		Tulangan		-	Bekisting		Perancah		Upah		Harga satuan pekerjaan
<u> </u>		_)	- -		1	1	Lange for 2	- del mail	Harna/m3 hoton	Reton	Tulangan	Bekistine+nerancah	(Rp)
		•	(40)	kg/m	Harga/kg	Jumian (Rn)		Harga/m (Rn)	(T.p)	(Rp)	(Rp)	(IAD)	(Rp)	(15)=(4)+(7)+(10)+(11)
_≘ 	(2)	ව	(4) (4)	(5)	(6)	(7)=(5)x(6)	(8)		(10)=(8)x(9)	(11)	(12)	(13)	(14)	+(12)+(13)+(14)
	Lantai atap						-							
<u></u>	Kolom utama K-250	Ę	000,661		3,580			29,600			89,000		17,550	
		Ę	139,000	166	3,580	594,280	15.00	29,600	444,000		89,000	186,750	263,250	1,716,280
	Kolom tine K 3 300/300/200	Ê	139,000	166	3,580	594,280	15.00	29,600	144,000	-	89,000	186,750	263,250	1,716,280
	Kolom tine K \$ 300/300/200	É	139,000	166	3,580	594,280	15.00	29,600	444,000		89,000	186,750	263,250	1,716,280
	Kolom tine K 13 300/200	m,	139,000	318	3,580	1,138,440	20.00	29,600	592,000		89,000	357,750	351,000	2,667,190
	Kolom tipe K 14 300/300	Ê	139,000	107	3,580	730,320	16.67	29,600	493,432		89,000	229,500	292,559	1,973,811
	Kolom tipe K 15 200/200	m ²	139,000	318	3,580	1,138,440	20.00	29,600	892,000	·	89,000	357,750	351,000	2,667,190
- 2	Kolom praktis	ĘE	139,000		3,580		•	14,800			89,000	1,125	8,775	
i 		ີຄ	139,000	257,25	3,580	920,955	20.70		306,360		89,000	289,406	181,643	1,926,364
	Balok induk	Ę	139 000		3 580			29.600		490.000	89,000	1,125	17550+276,500	
	_	Ē	139,000	130	3,580	465,400	12.40		367,040	490,000	89,000	7	494,120	2,190,810
	Balok tipe AB18 200/500	"H	139,000		3,580					490,000	89,000	146,250	494,120	2,190,810
_	Balok tipe AB9 200/300	Ë	139,000	213	3,580	762,540	13.36	29,600	395,456	490,000	89,000	239,625	510,968	2,626,589
	Balok tipe RB1 300/600	"E	139,000	126	3,580	451,080	8.63	29,600	255,448	490,000	89,000	141,750	427,957	1,994,235
_	Balok tipe RB2 200/400	°E	139,000	142	3,580	508,360	13.00	29,600	384,800	490,000	89,000	159,750	504,650	2,275,560
	Balok tipe RB3 250/500	<u>_</u> =	139,000	66	3,580	354,420	10,32	29.600	305,472	490.000	89,000	111,375	457,616	1,946,883
	Balok tipe RB6 300/600	Ē	139,000	134	3,580	479,720	10.32	29,600	305,472	490,000	89,000	150,750		2,111,558
	Balok tipe RB7 400/600	Ê	139,000	97	3,580	347,260	6.90	29,600	204,240	490,000	89,000	109,125	397,595	1,776,220
	Balok tipe RB8 200/400	E.	139,000	182	3,580	651,560	13.00	29,600	384,800	490,000	89,000	204,750	504,650	2,463,760
	Balok tipe RB9 200/300	Ë	139,000	221	3,580	791,180	14.03	29,600	415,288	490,000	89,000	248,625	522,727	2,695,820
	Balok tipe RB10 250/500	ੌΕ	139,000	127	3,580	454,660	10.32	29,600	305,472	490,000	89,000	142,875	457,616	2,078,623
	Balok tipe RB11 250/500	Ē	139,000	160	3,580	572,800	10.32	29,600	305,472	490,000	89,000	180,000	457,616	2,233,888
	Balok tipe RB13 250/500	Ê	139,000	146	3,580	522,680	12.40	29,600	367,040	490,000	89,000	164,250	494,120	2,266,090
	Balok tipe RB14 250/500	Ê	139,000	105	3,580	375,900	10.32	29,600	305,472	490,000	89,000	118,125	457,616	1,975,113
	Balok tipe RB15 250/500	Ë	139,000	158	3,580	565,640	10,32	29,600	305,472	490,000	89,000	027,771	457,616	2,224,478
	Balok tipe atap tangga B1 200/400	Ê	139,000	166	3,580	594,280	13.00	29,600	384.800	490,000	89.000			2,388,480
	Balok tipe atap tangga B2 200/400	Ē	139,000	127	3,580	454,660	13.00	29,600	384,800	490,000	89.000	0 142,875	504,650	2,204,985
	Balok tipe atap tangga B3 L. 200/350/350	ີ≘	139,000	160	3,580	572,800	9.04	29,600	267.584	490,000	89,000	000'081	435,152	2,173,536