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Abstract

The requirement to generate this random process needs only to define the
variance-covariance matrix of the random process. Since the random process
is defined in three dimensional space, then we can use a spatial model. One of
the spatial model to define the random process is in the form of variogram,
which is a function of distance between pairs of observations. The
variance-covariance matrix may be determined in relation with two other
properties, those are correlogram and covariogram.

The simulation process was started by generating a random points within a
particular shape of region. The locations are uniformly distributed within the
region. Lets V is a variance-covariance matrix of the random process Y[L].
The random process Y [L] may be defined by the semivariogram model y(d;).
The dy; is a Cartesian distance between two different individual within domain
D of boundary ®. The distribution-based approaches can be applied to
generate random observations using Choleski decomposition.

Keywords : spatial data, random generation, semivariogram, Choleski
decomposition

Intisari

Untuk membangkitkan suatu proses acak hanya membutuhkan pendefinisian
matrik varian ko-varian dari proses acak tersebut. Selama proses acak
tersebut didefinisikan dalam ruang dimensi tiga, maka dapat digunakan
model spasial. Salah satu model spasial untuk menjelaskan proses acak
adalah dalam bentuk variogram, yaitu sebuah fungsi dari jarak antar
pasangan observasi. Matriks varian ko-varian dapat ditentukan berdasarkan
dua properti lainnya dari proses acak yaitu korelogram dan kovariogram.

Proses simulasi dimulai dengan membangkitkan titik-titik acak dalam suatu
wilayah. Lokasi dari titik tersebut diasumsikan menyebar seragam. Bila
ditetapkan bahwa V adalah matrik varian ko-varian dari suatu proses acak
Y(L). Proses acak Y(L) tersebut didefinisikan dengan model variogram y(dy),
dimana dj adalah jarak dalam sistem Cartesian dari dua individual dalam
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domain wilayah D dan dalam batasan &  Pendekatan distribusi dapat
diterapkan untuk membangkitkan observasi acak melalui dekomposisi

Choleski.

Kata kunci : data spasial, pembangkitan acak, semivariogram, dekomposisi

Cholesk
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1. Introduction

We may have interest in looking at
variability of the observations in the space.
In this case spatial variability may be
specified as target of inference of the study.
One way to observe spatial variability
could be done by measuring spatial
autocorrelation [1].

Pawitan [2] investigated aggregation bias
in variogram analysis, but the limitation is
the availability of data at different level,
such as individual level and aggregated
level data. One possible solution is done by
generating individual level data and its
aggregated level data.

This paper will discuss a method of
generating spatial series data, in such a
way it will have a specified inter-dependent
among observations according to a
variogram model. The method will be
based on Choleski decomposition,
univariate case will be considered.

2. Literature review

Arbia [3] discussed two methods of

simulation of spatial data, that is
distribution-based methods and
model-based approaches. The

distribution-based method will be applied
in this paper. The distribution-based
approaches generate random observations
according to distribution of the process
under study, which is defined through a
variance-covariance matrix.
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Haining, Griffith, and Bennet [4] presented
a framework for the generation of surfaces
that posses the property of spatial
autocorrelation. They stated two objectives
of this simulation, the first is to generate
spatial data with known, specific, and
limited spatial’s characteristics. The
second is to obtain realization of a spatial
process in order to identify properties of
the process. Meanwhile, Goodchild [5]
proposed an algorithm to generate data to
be considered at aggregated level, which
took account of the spatial autocorrelation
factor.

3. Definition of population

Define % is a finite population of
individual in a particular region 2. The
boundary of the region 2 is defined
explicitly. A random process Y is
considered with the elements Y [{; ], which
indicates a characteristic value of an object
located at /i . Assume the random process Y
have the following moment structure E(Y
[6D)= n(i) and Cov(Yi [1 11 [ ) =4,
(€s¢)with /;,[; e Dc R andij e ?%. The
Cov(Y; [6; ]; ¥; [§; D) = 2(C; ) if i =, thatis
a population variance.

Variogram is defined by considering two
assumptions, those are the intrinsically
stationary and second order stationary.



Accepting the first assumption then the
intrinsically stationary assumption will
follow, that is

Y IleD
v 1eD

(i) E(Z(I4+d)—Z(1) =0
(if)y V(ZI4+d)—Z(1)) =2y(d):

(1)

where, / indicates a particular location, and
d indicates a distance apart from two
different location. Second order stationary
is defined by following two conditions,
E(Y[L]) = p and Cov(¥; [4; ]; ¥, [ ]) =
C(l; - 1;). Where C(.)is a covariance func-
tion or covariogram, which is defined as a
function of distance. The distance may be
defined depend on a direction, but an
isotropic condition will be considered
instead. The isotropic condition stated that
C(L; - ¢;) is a function only of |1ei - ¢l |
[6,7]. In this case, the {; - {; is a distance
between location /; and /; in any directions.

The expression of 2y(d) is defined as a
variogram. Onehalf of the variogram or
v(d) is defined as a semivariogram.
Semivariogram is widely used in practice,
therefore this term will be wused in
subsequent discussion. Relation between
variogram and covariogram can be defined
as

Cd)=C(0)=y(d)

()

Semivariogram is a statistics which can be

modeled through a distance function.

Cressie [8] presented some models of

semivariogram, such as exponential,

spherical, Gaussian, linear, and others. For

example, the exponential model of the
semivariogram is,

—3dy;

yid;)=n+ (s —n)(l —exp( .

1), dzj =0

)

The theoretical semivariogram models
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commonly contain three parameters, those

are nugget, sill, and range (n,s,r). These

parameters are

. nugget effect (n) : is the value of
semivariogram at distance equal to 0.
Theoretically y(0) = 0 but in practice
v(0) > 0.

o sill (s) : is the value of
semivariogram when the distance is

approaching an infinity, that is
lim ;/(d[j):s . Theoretically it
dj—»

will equal to 6 or C(0).

. range (r) : is a distance d for dy > 0
such that the value of y(dy) is turning
closely to s or C(0). This distance
indicates a situation of p(d) = 0, that
is when individuals are independent
with each other.

5. Generating observations

The framework is developed in general but
for a practical reason the exponential
semivariogram model of equation (3) will
be considered.

The process is initiated by generating a
uniform individual locations in two
dimensional Eucledian space, 2, within the
boundary & All pairs of distance are
calculated, and then the
variance-covariance matrix is computed by
relation (2). Then applying Choleski
decomposition into the
variance-covaraince matrix to generate the
individual data values.

5.1 Generating uniform individual
locations

The individual locations are randomly
generated following a uniform distribution
within the range of [X-min;X-max] and
[Y-min;Y-max]. One realization is shown
in Figure (1). The points are generated
between [20,90] in x axes and between
[10,70] in y axes.
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5.2 Choleski Decomposition

Some of decomposition algorithm may
destroy the symmetry of the symmetric
matrix, such that the original matrix is
broken down into L and U matrix

components. The L component indicates
the lower triangular matrix, and the U
indicates the upper triangular matrix.
Hence it calls as LU decomposition.
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Figure 1: Random individual location
The Choleski decomposition may That will give,

preserved the symmetry of the symmetric
matrix. This decomposition is derived from
the LU decomposition. Let consider A is a
symmetric matrix of dimension n x n, then
the A can be decomposed into,

A=LDL'
“4)

where A is a symmetric matrix and D is a
diagonal matrix.

If the matrix A is a symmetric and also
positive definite then the elements of the

matrix D are positive. Hence +/D could be
defined as the matrix with each elements
are the square root of the elements of

matrix D. Then we may have L = LVD.
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A=1vDVDL'=LLT
(5)_
The decomposition of matrix A into LL"
is attributed to Choleski decomposition.
The general formulae for Choleski
decomposition could be defined as follow,

(9]
1
i-1 N7
lii = (ﬂs‘:‘ = for)
k=1

j—1
ai; — > w1 lilix
lij = A= L ij_—l A dorj <i

(6)

where [ and a are the element of matrix L
and A, respectively.

5.3 Generating data values
Lets consider that V is a matrix of



variance-covariance of the individuals data
values,

Z. If Z is a vector of individuals data
values with dimension n 1 then the V will

have n x n dimension.

Arbia [3] noted a method of generating
such individuals data, that is applying
Choleski decomposition procedure. This
method is called as distribution-base ap-
proach. Using relation (5), we get the L

from the V, thatis V = LLT.

Lets assume that e is a vector of
independent identically distributed of
standard normal (N (0,1)) random variable.
Then the random process Z may be
generated from e by using relation (7).

5.4 Implementation
Let defines a random process Z; , where / is

defined in 2, which is a subset of Euclidean
2
space, £ . Let assumes that the individual

locations are distributed uniformly within
the region 2. And consider the region 2D is a
planar region with rectangle shape. The
boundaries of the region 2 are defined
within the following range values, [20,80]
easting and [10,90] northing. The
individuals locations are generated and
distances (dj; ) of all pairs of points can be
calculated. Let considers the exponential
semivariogram model with the following
parameters, N =5, S =20, and r = 15. The
variance-covariance matrix, V, can be
defined by applying equation (2) into
calculated distances based on a specified
semivariogram model. The matrix V is
defined explicitly by the following,
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C(0)  Cldyp) Cldij) Cidyy)
C(dyn) C(0) Clda)
: ) Cidy) :
C(d;1) Cld;)  C(0) Cld;n)
: C(0)
\C(d;;l C(dyy) c(0) }
(8)

where the diagonals’ elements are equal to
C(0) or equal to the sill (S). Meanwhile, the
other elements are defined by equation (2).

The L matrix is derived from the V by the
Choleski decomposition. The vector e of
standard normal random variable of size N
is generated. Therefore, the individual data
values are generated by applying equation
(7). Result of the simulation is shown on
the following Figure (2), with 1500
numbers of observations,
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Figure 2:

Result of the simulation. The solid line is a theoretical semivariogram and the points are a
simulation result.
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Figure 3:

One simulation result of the exponential semivariogram model (n =0, s=20, r = 10).
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6. Application

Lets consider exponential
semivariogram  model, with the
following parameters n = 0, s =20, and

r = 10. Hence the V matrix is defined as
C(0) = s =20 and C(d;) = 20 - y(d ).

Lets consider that /i is uniformly
distributed over the domain region 2. The
region 2 is defined as rectangular with
(20,10) lower left coordinates and (90,80)
upper right coordinates. The simulation
generate 1500 numbers of observations,
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and the result is in Figure (3).

The solid line in Figure (3) indicates a
theoretical semivariogram of individual
level data. The square dots ([J) indicate
empirical semivariogram. The solid line
starts from zero (nugget = 0), going up as a
distance increase, and then turn into a
constant line at distance £ 10 (range = 10)
when the semivariogram value is around
20 (sill = 20). The horizontal straight line
indicates variance of the individual data.
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Figure 4:
Distribution of parameters; (a) nugget, (b) sill, and (c) range, from 200 simulations

Figure (4) shows distribution of the
estimated parameters of the model from
200 simulations. The distribution exhibit
that the generated value lay within the
expected value (n = 0, s =20, and r = 10).
But there are some outlier in estimating the
parameters of the model, since a
divergence in iteration of non-linear least
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square procedure, which is resulted a very
big values. One reason was identified as an
initial value problem in non-linear
estimation procedure.

The simulation process was started by
generating a random points within a
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particular shape of region. The points
locations are uniformly distributed within
the region. The distribution based methods
under a specified spatial model is an
effective  approaches to  generate
inter-dependent observations. The
variogram can be used to specify inter-
dependency observations spatially.
Although in this paper is wused the
exponential model, other models of
variogram can be applied in the same
manner. There are some notes in the
estimated parameters of the models from
the generated data.

The nugget distribution shows some
very large value of the nugget estimator.
This is caused by non convergence
estimator of the fitting procedure. And
in general, the simulation could show
the true parameter value of the nugget.

The range distribution may have a better
result in term of its predefined model. It
seems that the range estimator is
approaching the true parameter value, that
is 10. It is caused by the non convergence
estimator of the fitting procedure.
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