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Rekonstruksi meson D0 dilakukan dari mode peluruhan D0 →K−π+. Deteksi produk pelu-

ruhan dari D-meson dilakukan dengan menggunakan detektor ALICE. Rekonstruksi dilakukan

dengan 55 juta minimum bias event dalam tumbukan proton-proton di energi-pusat-massa (
√

s)

13 TeV. Terdapat sekitar 1417 ± 87 meson D0 setelah seleksi di selang pT 1<pT <24 GeV/c.

Perbandingan dengan rekonstruksi D0 pada
√

s = 7 TeV dari Run 1 juga dilakukan. Penje-

lasan mengenai Model Standar, terutama pada bagian interaksi kuat disediakan. Karakteristik

khas dari teori interaksi kuat, Quantum Chromodynamics, diuraikan bersama dengan perannya

dalam menjelaskan produksi meson D. Selain latar belakan teoritis, deskripsi detektor ALICE

juga disediakan.

Kata Kunci: Meson D, Quantum Chromodynamics, Large Hadron Collider, ALICE



Abstract

Reconstruction of D0 meson was done in the decay mode of D0 → K−π+. The detection of the

D0 meson’s decay products was done using the ALICE detector. The reconstruction was done

with a data sample of 55 million minimum bias events in proton-proton collisions at centre-

of-mass energy (
√

s) of 13 TeV. About 1,417 ± 87 D0 meson was counted after selection cuts at

1<pT <24 GeV/c. Comparisons with D0 reconstruction at
√

s = 7 TeV from Run 1 was done.

A description of the Standard Model, especially the realm of the strong interaction is provided.

Peculiar characteristics of the theory of the strong interaction, Quantum Chromodynamics, is

outlined along with their roles in explaining the production of the D meson. Aside from the

theoretical background, a description of the ALICE detector is provided.

Keywords: D0 meson, Quantum Chromodynamics, Large Hadron Collider, ALICE
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Since as early as 6th century B.C.E., the idea that all matter were comprised of elementary par-

ticles was already familiar. It was Democritus of ancient Greece who proposed that all matter

was composed of small, invisible particles called atoms [11]. This idea later developed into nat-

ural philosophy called atomism, from Greek atomos, meaning ”uncuttable”. The idea prevailed

in Europe until 2nd century C.E., when after Galen had presented his extensive discussion on

atomism [12]. Since then no serious work was done on the subject. It was in the 17th century

that the idea of atomism was resurrected by French philosopher Rene Descartes.

The advancement of engineering and technology in the 18th century pushed scientists to

re-question the idea of the composition of matter. In the 19th century, John Dalton concluded

that elements were constituted of a single unique particle, which he named atoms, after the

term ”atom” that was used in atomism philosophy. Not long after that in the 20th century,

it was found through Rutherford’s experiment that atom was not the smallest constituent of

matter, but instead composed of smaller particles, a positively charged nucleus with negatively

charged electrons orbiting around it. In the 1930s, it was found that the nucleus was comprised

of two particles, a positively charged proton and a neutral particle named neutron.

Also in the 1930s, the idea of an ”electrically neutral particle with a spin of 1
2 and obey the

exclusion principle” was put forth by Wolfgang Pauli in a letter to his colleagues at a physi-

cist workshop in Tubingen. Pauli came across the idea of this particle in order to explain the

continuous β spectra in β-decays. In 1934, Enrico Fermi built the first theory of the β-decay of

nuclei based on Pauli’s idea and named it neutrino [13].

In the later half of the 20th century, with the development of particle accelerator and par-

ticle detectors, experimental particle physics at high energy became feasible. The experiment

created many particles, all of which seemed to be elementary.
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The abundance of elementary particles led to the proposal of up, down, and strange quarks

by Murray Gell-Mann and George Zweig in 1964. These quarks were proposed to be the con-

stituent of mesons and baryons. They have a spin of 1
2 and carry charge of 2

3 , − 1
3 , − 1

3 , respec-

tively. As these charges could not be observed, quarks were treated as mathematical objects

rather that physical ones. In the same year, Sheldon Glashow and James Bjorken proposed the

existence of a fourth quark, coined the charm quark, to mimic the pattern found in leptons. A

few years later in 1967, Steven Weinberg and Abdus Salam proposed the theory of electroweak

interaction. In this theory, a neutral boson was required (now known as the Z boson). Con-

tinuing from the proposal of quarks, in 1968 electrons were observed bouncing off small hard

cores inside proton in a scattering experiment at the Stanford Linear Accelerator (SLAC). This

experiment gave evidence to the existence of quarks. Since then, many theories have been pro-

posed to explain the fundamental interaction of matter such as the Quantum Electrodynamics

(QED), Quantum Chromodynamics (QCD), and the electroweak theory. In 1974, a summary

talk given by John Iliopoulos presented a view of physics in a single report, now called the

Standard Model. In the same year, experiments at SLAC and Brookhaven discovered a charm-

anticharm meson, now called the J/Ψ meson [14][15]. This discovery provided support to the

existence of the charm quark, further validating the success of the Standard Model. In 1976, the

tau lepton was discovered at SLAC [16]. This lepton was the first third generation particle. A

year later in 1977, Leon Lederman discovered another quark called the bottom quark. As it was

well known by physicists that quarks come in pairs, the quest of finding the sixth quark began.

In 1979, evidence for gluon radiated by quarks was discovered in DESY laboratory. In 1983, the

intermediate bosons of the weak interaction was discovered at CERN in proton-antiproton col-

lision, confirming the prediction of the Standard Model. In 1995 after 18 years since the quest

of finding the final quark began, experiments at Fermilab discovered the top quark. Finally in

2012, Higgs boson was discovered at CERN by ATLAS and CMS experiments [17].

The discoveries of fundamental particles by various experiments to improve the Standard

Model demonstrates the intertwine of theoretical and experimental physics. In particle physics,

the fundamental building blocks of matter are studied along with their interactions. The Stan-

dard Model of particle physics describes these fundamental particles and the force particles

exchanged between them. Among these forces are electromagnetic, weak, and strong interac-

tion. Although the Standard Model has been immensely successful, it is not without its flaws.

It contains arbitrary parameters such as coupling strengths that still cannot be predicted. There

are also many features that cannot be explained, such as the existence of three generations of

matter particles [17]. The world’s most powerful particle accelerator at the moment, the Large
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Hadron Collider (LHC), located at the France-Switzerland border is colliding protons and lead

ions in order to take a deeper look into matter and its constituent particles and is an effort to

look deeper into the Standard Model and even beyond.

One of the major experiments at CERN, A Large Ion Collider Experiment (ALICE) studies

the physics of strongly interacting matter. The strong interaction is described in a theory called

Quantum Chromodynamic (QCD). Quarks and gluons are the only fundamental particles sub-

ject to the strong force. The unique properties of QCD give rise to the possibility of a phase

of matter called Quark Gluon Plasma, which is believed to permeate the universe during its

early times [18]. During proton-proton collision at the Large Hadron Collider, heavy quarks

can be created. One such quark that can be created is the charm quark. After its creation, it

immediately form a hadron due to a phenomenon called confinement. One type of hadron that

the charm quark can hadronize into is the D-meson. Understanding the D-meson production

in proton-proton collision provides an opportunity to assess perturbative Quantum Chromo-

dynamic (pQCD) calculations at highest available energy [19].

1.2 Objectives and Benefits

The objective of this final project is to reconstruct D0 meson from data sample of proton-proton

collisions at centre-of-mass energy of 13 TeV, recorded by the ALICE detector. This final project

will be a part of an international scientific collaboration, ALICE, where the results of this final

project will contribute to the study of D meson production in respect to charge multiplicity.

Hopefully the audience of this final project can learn in general about the basic overview of

particle physics and its importance in the scientific field. Specifically in experimental particle

physics and an example of what analysis is done in an experiment. As for myself, by doing

this final project, I will gain experience with analysing experimental data, which is a valuable

experience as a kick start getting into the field of experimental particle physics.

1.3 Outline of the Thesis

The final project write up is organized as follow. Chapter 2 includes introduction to the the-

ories relevant to this final project. An overview to the standard model is given in Section 2.1,

followed by a brief explanation to the quark and strong force in Section 2.2. An overview to

quark gluon plasma and the D meson encompass the rest of the chapter in Section 2.3 and Sec-

tion 2.4. In Chapter 3, an overview of the Large Hadron Collider and the ALICE detector is
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given along with an overview of data collection in ALICE. An overview of the Large Hadron

Collider in laid out in Section 3.1. Section 3.2 gives an introduction to the ALICE Detector as

well as detailing the sub-detectors within ALICE relevant to this final project. Following after,

Chapter 4 describes reconstruction. Section 4.1 describes track and vertex in general followed

by tracking and vertex determination in ALICE detector. Section 4.2 describes reconstruction of

D0 meson decay and the topological and kinematic criteria used to filter in the D0. Following

that, the resulting reconstruction is presented in Section 5, along with comparison to recon-

struction done with Run 1 data of centre-of-mass energy of 7 TeV. The last section is conclusion

and outlook.
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