

Volume 1

INTERNATIONAL SEMINAR ON "Water Related Disaster Solutions"

SHERATON MUSTIKA YOGYAKARTA, INDONESIA September 6th - 8th, 2013

Indonesian Association of Hydraulic Engineers

Proceedings

"Water Related Disaster Solutions"

Volume 1

Yogyakarta, Indonesia September 6th - 8th, 2013

Proceedings International Seminar on Water Related Disaster Solutions The Sheraton Mustika Yogyakarta, Indonesia September 6th–8th, 2013

Volume 1

500 pages, xiv, 21 cm x 30 cm 2013

Himpunan Ahli Teknik Hidraulik Indonesia (HATHI), Indonesian Association of Hydraulic Engineers

Secretariat, Gedung Dit. Jend. SDA Kementerian PU 8th Floor, Jl. Pattimura 20, Kebayoran Baru Jakarta 12110 - Indonesia Phone/Fax. +62-21 7279 2263 http://www.hathi-pusat.org email: hathi_pusat@yahoo.com

Scientific Commite

Prof. Dr. Ir. Radianta Triatmadja, M.Sc Prof. Suripin Prof. Shie-Yui Liong Prof. Hitoshi Tanaka Prof. Masaharu Fujita Prof. Kuniaki Miyamoto Prof. Chjeng-Lun Shieh Prof. Lianxiang Wang Prof. Te Kipa Kepa Brian Morgan Prof. Neil Grigg Dr. Arthur Mynet Prof. Mustaka Altinaker Prof. Roberto Renzi Dr. PP Mujumdar

Reviewers/Editors:

Prof. Dr. Ir. Sri Harto, Br., Dip., H., PU-SDA Prof. Dr. Ir. Nadjadji Anwar, M.Sc., PU-SDA Dr. Ir. Moch. Amron, M.Sc., PU-SDA Prof. Dr. Ir. Djoko Legono, Dip. HE. Prof. Dr. Ir. Nur Yuwono, Dip. HE., PU-SDA Doddi Yudianto, S.T., M.Sc., Ph.D.

PREFACE

The International Seminar with special focus on "Water Related Disaster Solutions" was implemented successfully from 6th to 8th September 2013 in Yogyakarta attended by experts and professionals from many countries including Indonesian as the host.

The discussions of the Seminar had covered the entire aspects of the water related disaster solutions including its risk management, the innovation in disaster mitigation and adaptation, as well capacity building and community participation aspects, involving highly notified professionals with numerous technical models, state of the arts as well as scientific and empirical deliberations.

The overall presentations, discussions and debates during the Seminar concluded that the outputs will undoubtedly contribute to remarkable concepts, strategies, lessons learned, and sharing of experiences on the water related disaster solutions, particularly on the environmentally sound technologies and sustainable practices on the years to come. Based on this fact, I believe that the proceeding of this Seminar will be valuable document for the implementation of the adaptation and mitigation to the climate change.

I would like to thank the organizing committee, peers and writers, seniors and all members of HATHI for enormous supports to the Seminar. May God bless you all.

Dr. Ir. Moch. Amron, M.Sc., PU-SDA

Chairman of HATHI, September, 2013

TABLE OF CONTENTS

PR	EFACE	iii		
TABLE OF CONTENTS				
TA	TABLE OF CONTENTS VOLUME 2			
SU. Ris	B THEME 1 sk Management in Water-Related Disaster			
1.	Action and Activities for Large Scale Sediment-Related Disasters in the Kii Peninsula, Japan – Takasue Hayashi , Atsushi Okamoto, Naoki Imamori, and Tsuyoshi Nagamachi	1		
2.	Sedimentation Effects in Reservoir Toward The Declining Function of Flood Control	11		
3.	 Pranoto Samto Atmojo, Kirno, Bertha Silvia Prativi Monitoring of Slope Deformation for Early Warning Against Shallow Landslide Katsuo Sasahara 	23		
4.	Operation Analysis of Sutami Reservoir Due to the Climate Change in Malang Regency of East Java	33		
5.	Sediment Budget, Shoreline Changes, and Groin Performance After Nusa Dua Beach Nourishment Project, Bali, Indonesia – Soni Senjaya Efendi and Dede M. Sulaiman	46		
6.	Ratio Between Maximum and Minimum Discharge as an Anticipated Indicator of River Disaster	55		
7.	Regional Scale Landslide Susceptibility Zonation in Nepal Himalaya – Ranjan Kumar Dahal and Manita Timilsina	62		
8.	Slope Stability Analysis of Landslide Between Km 66+500 and Km 104+420 Along the Mechi Highway, Eastern Nepal – Vishnu Dangol and Deepak Chamlagain	73		
9.	Flood Study of Sub-Catchment Buah in Palembang Using Spatial Analyses and Hydraulic Modelling – Rahmadi and Sumi Amariena Hamim	82		
10.	Risk Assessment Approach for Climate Change Adaptation in Tanjung Api-Api Port Area Banyuasin Valley, South Sumatera	93		

11.	Flood Resiliency Strategy of Kampung Ratmakan, Code Riverside Settlement, Yogyakarta – Rr. Vicky Ariyanti and Andie Arif Wicaksono	115
12.	 Contribution of Karian Dam for Flood Protection in Ciujung River Basin Using Two Dimensional Modelling Yadi Suryadi, Dian Indrawati, Suardi Natasaputra, Ni Luh Putu Adi Ariestuti, Evi Fauziah, Riswanto Rosi, Dian Mahdi Hidayat, and Dian Insani 	125
13.	Construction of the Karalloe Multipurpose Dam as Disaster Solution for Raw Water Crisis and Flood in Bontosunggu – Subandi , Hariyono Utomo, Zainal Arifin, and Agus Setiawan	135
14.	The Application of Retention Pond System to Control Flooding in Southern Pontianak City – Jane E. Wuysang and Doddi Yudianto	145
15.	Effective Flood Control through Integrated and Collaborative Operation of Three Dams in Japan – Yuki Nakagawa, Kazuaki Shibata, and Yuki Hachijo	154
16.	 Flood Peak Discharge Equation at Surrounding Gembong Watershed, Pasuruan District, East Java, Indonesia – Laksono D. Nugroho, M. Bisri, Lily Montarcih, and Aniek Masrevaniah 	166
17.	Water Resources Drought: Hydrological Drought in Developed River Basins – Waluyo Hatmoko , R. Wahyudi Triweko, and Iwan K. Hadihardaja	177
18.	Strategy in Controlling River Bed Degradation in Brantas River Basin - Ni Made Sumiarsih	188
19.	 Development of Emergency Monitoring Device for Natural Dam Teruyoshi Takahara, Koji Morita, Takao Yamakoshi, Akihito Kaji, Yosuke Ito, Toshiki Yanagimachi, Takeshi Shimizu, and Tadanori Ishizuka 	198
20.	Numerical Simulation of Dam Break using Finite Volume Method: Case Study of Situ Gintung – Bobby Minola Ginting , Bambang Adi Riyanto, and Herli Ginting	206
21.	 Application of Rainfall Radar and Runoff Model to Volcanic Mountain Watersheds Shusuke Miyata, Masaharu Fujita, Takuji Teratani, Hirofumi Tsujimoto, and Takeshi Osaka 	218
22.	 Numerical Solution of River Flood and Dam Break Problems by Cell Centred Finite Volume Scheme Dantje K. Natakusumah, M. Syahril Badri Kusuma, Dhemi Harlan, M. Rizky Ramadhan, and Bobby Minola Ginting 	224
23.	Drought Analysis Using EDI and SPI Method to Mitigate Drought Disaster in Wonogiri District	239

24.	 Analysis of Reservoir Utilization in Middle Stream Ciliwung as Mitigation and Adaptation of Flood Disaster in Central Jakarta – Rommy Martdianto 	250
25.	 Predicting the water level of Natural DAM in Ambon, Maluku, Indonesia Koji Morita, Tadanori Ishizuka, Takao Yamakoshi, Takeshi Shimizu, Akihito Kaji, Reiko Akiyama, Hisaya Sawano, Yosuke Ito, Toshiki Yanagimachi, A. Tommy M. Sitompul, Fajar Wicaksono, William M. Putuhena, Isnan F. Akrom, and Sutiyono 	263
26.	Emergency Response Against Water Quality Accident to Secure Safe Water Supply for Capital Area	271

- Satoshi Ojima and Koji Tsuboi

SUB THEME 2

Innovation in Disaster Mitigation and Adaptation

27.	 The Role of Sabo Works in The Water-Sediment-Related Disaster Mitigation in Indonesia Bambang Hargono, Joko Cahyono, and Djoko Legono 	283
28.	Sediment Related Disasters in Japan (Experiences and Countermeasures) – Yukihiko Sakatani	291
29.	Routing of Local Inundation as Performed by Polder System in East Jakarta.	301
	 Adam Pamudji Rahardjo, Puji Harsanto, and Djoko Legono 	
30.	Model of Mockwyn-UB for Assessing Water Availability Due to The Effect of Climate Change	311
	 I Wayan Sutapa, Moh. Bisri, Rispiningtati, and Lily Montarcih 	
31.	The Effectiveness of Coastline Protection Structure at Estuary of Batang Kambang, West Sumatra – Bambang Istijono , Ali Musri, and Rahmad Yuhendra	323
32.	Theoretical Approach of Long Shore Current Reduction Coefficient through Permeable Groin – Hasdinar Umar , Nur Yuwono, Radianta Triatmadja, and Nizam	332
33.	Early Warning System as a Preventive Measure for Landslide Risk Reduction in Kabilash Village, Chitwan District, Nepal - Shanmukhesh C. Amatya	342
34.	 The Performance of Perforated Screen Seawall in Dissipating Waves, Minimizing Reflected Wave and Run-Up/Run-Down Muhammad Arsyad Thaha, A. Ildha Dwipuspita, Willem Minggu, and Haeruddin 	355
35.	Hydraulic Intervention Impact on Subsidence and Carbon Emissions of Peatland as a Disaster Mitigation Effort at Sei Ahas - Central Kalimantan	365

– L. Budi Triadi, Aljosja Hooijer, Ronald Vernimmen, and Surya Dharma

36.	Consideration in Choosing The Appropriate Flood Control System for Tenggarong River – Doddi Yudianto and Steven Reinaldo Rusli	376
37.	 Simple Analytical Solution of Wave Transmision through Submerged Coastal Structure Chairul Paotonan, Nur Yuwono, Radianta Triatmadja, and Bambang Triatmodjo 	389
38.	Innovation of Water-Trap Series Construction and Vetiver Grass in Disaster Mitigation and Adaptation – Susilawati , and Pupun Adi Awi Andi	399
39.	 A Method for Prediction of Formation of Landslide Dams Caused by Heavy Rainfall in Kii Peninsula, Japan Hefryan Sukma Kharismalatri, Hitomi Kikuchi, Yoshiharu Ishikawa, Takashi Gomi, Katsushige Shiraki, and Taeko Wakahara 	410
40.	The Evaluation of Retention Pond Capacity under a Series of Rainfall Occurence and Land Development – Albert Wicaksono and Doddi Yudianto	419
41.	Rainfall-induced Landslide Hazard Zonation along the Road Side Slopes of Central Nepal – Manita Timilsina and Ranjan Kumar Dahal	428
42.	 Influence of Rectangular Lay-out of Underwater Sill to the Flow Patterns and Sediment Transport Tania Edna Bhakty, Nur Yuwono, Radianta Triatmadja, and Bambang Triatmodjo 	439
43.	Integrating the Existing Warning and Evacuation Systems against Debris Flow in Area of Merapi Volcano – Sutikno Hardjosuwarno , Bambang Sukatja, and Dyah Ayu Puspitosari	449
44.	Correlation of Drought and Atmospheric Isotopologues in Indonesia – Samuel J. Sutanto , G. Hoffmann, W. Adidarma, and T. Röckmann	460
45.	Debris Flow and Flash Flood at Putih River after the 2010 Eruption of Mt. Merapi, Indonesia – Yutaka Gonda , Djoko Legono, Bambang Sukatja, and Untung Budi Santosa	471
46.	Simulations of Pyroclastic Flows at Mt. Merapi – Kuniaki Miyamoto , Haruka Matsuyoshi, Djoko Legono, and Masaharu Fujita	481
47.	Numerical Simulation of Tsunami Force on building Using Smoothed Particles Hydrodynamics – Kuswandi , R. Triatmadja, and Istiarto	492

TABLE OF CONTENTS VOLUME 2

PRI	EFACE	iii		
TABLE OF CONTENTS VOLUME 1 w				
TA	BLE OF CONTENTS	ix		
SUI Caj	B THEME 3 pacity Building for Water Resources Management			
1.	Cascade Weir as a Solution to Prevent Damage of Linamnutu Weir as Caused by Flood Disaster – James Zulfan, Irwan Syafri, and Erman Mawardi	1		
2.	Effectiveness and Issues on Portable Seawater Desalination Equipment as Preparedness For Disaster	16		
3.	The Effect of Debris on Tsunami Velocity – Siti Nurul Hijah , Kuswandi, Benazir, and Radianta Triatmadja	27		
4.	Wetted Perimeter Method for Environmental Flow Assessment of Sekampung River at Argoguruh – E. P. Wahono , D. Legono, Istiarto and B. Yulistiyanto	33		
5.	Tsunami Focusing along a Valley of Linearly Varying Width and its Effect on Building	40		
6.	Landcover Change and its Effect on Soil Erosion and Economic in Manjuto Watershed of Indonesia – Gusta Gunawan , Dwita Sutjiningsih, and Herr Soeryantono	52		
7.	Integrated Investigations for Slip Surface Determination in the Landslide- affected Area of The Blue Nile Gorge, Central Ethiopia – Getnet Mewa and Leta Alemayehu	65		
8.	Lessons from The Application of Low Crested Breakwaters as an Alternative Structure for Coastal Protection	77		
9.	Priority Strategy using Sensitivity Analysis for Related Policy on Water Disaster	88		
10.	 Water Quality Monitoring and Data Quality Assurance	99		

11	 Japan's Stormwater Management Policy Shift Coresponding to Current Issue
12	 Flood Disaster and Early Warning System in Thailand
13	 Effect of Bed Shear Stress on Static Armour Layer
14	 Hydraulics of Flow through Underground Tunnel to Reduce Flood Disaster Risk of Ciliwung River
15	 Disaster Caused by Typhoon Bopha in Southern Mindanao
16	 Urgent Recovery and Risk Management on Embankment and Lifeline - Case of 2011 Earthquake
17	 Flood Area Mapping by Using Computed River Overflow
18	 A Catastrophic Flash Flood Caused by High Altitude Rockslides in Nepal Himalaya
19	 Water Allocation Policies In Dodokan River Basin Based On Mros
20	 Physical Model to Study the Hydraulic Performance of Bener-Dam Spillway at Bogowonto River
21	 The Impact of Hydrodynamic Flow into River Bed Alternation of Lobawang River, Sitobundo
22	 Rational, Organized, and Successful Emergency Operation against Disaster: Case of the Historic Earthquake in Japan
23	 Development of GIS-based Sediment Runoff Model and Its Application 232 Masaharu Fujita, Kazuki Yamanoi, and Daizo Tsutsumi

Х

SUB THEME 4

Community Participation in Disaster Management

24.	Early Warning for Landslide Hazards Based on Community Participation: Case Study of Padang Pariaman District, West Sumatera, Indonesia – Zahrul Umar, Lili Warti, and Idzurnida Ismael	247
25.	Community Participation in Flood Control Management – Bambang Priyambodo	260
26.	Community Perception on the Implementation of Infiltration Wells in Urban Areas for Reducing Disaster Risk	270
27.	Community Empowerment in Watershed Conservation as Disaster Management in Brantas River Basin, Indonesia – Astria Nugrahany and Erwando Rachmadi	278
28.	Green Open Space on Development of Urban Community-based for Supporting Zero Delta Q Policy	288
29.	IWRM Approach on Water and Disasters: Report in United Nation'sSpecial SessionTadashige Kawasaki	301
30.	Relevance of Community Led Disaster Response in Aotearoa New Zealand to International Context – Te Kipa Kepa Brian Morgan , Tumanako Ngawhika Fa`aui, and Pia Bennett	314
31.	A study of Community-Based Disaster Preparedness by Making Disaster Prevention Map in Ambon – Tokunaga Yoshio , Haryono Hansen Sirait, Erfien Kaparang Noviyanti	324

THE EVALUATION OF RETENTION POND CAPACITY UNDER A SERIES OF RAINFALL OCCURENCE AND LAND DEVELOPMENT

Albert Wicaksono* and Doddi Yudianto

Civil Engineering Department, Parahyangan Catholic University *Email: albert.wcso@gmail.com; Phone: +628122455299

Abstract

A retention pond with total volume of 80,000 m³ and total area of 1.5 ha was constructed within a residential area in Bandar Lampung in order to protect the area from inundation during high intensity of rainfall. On 24 January 2013 the embankment of pond was found collapsing and caused about 1 m inundation at downstream. This study is aimed at evaluating the reliability of available retention pond to control runoff that flows into it. HEC-HMS model is employed here to simulate the events. Based on the simulation results, it is found that the existing retention pond is able to control the 5 years flood. Another retention pond is necessary to be built at the upstream in case higher return period is considered. Otherwise, outlet with diameter 1 or 1.5 m must be installed to lower the water level within the pond. Moreover, a combination of new retention pond (432,000 m³) and two culverts with diameter 1 m may increase the capability of available retention pond to cope with 100 years rainfall. To prevent inundation occurs at downstream, construction of dike or normalization is therefore crucial.

Keywords: flood control, retention pond, HEC-HMS

INTRODUCTION

General Background

Retention pond, as one of structural flood protection system, has been widely employed in various land developments. As reported by Wicaksono (2012, 2013), many new developed residential areas or industrial areas are now facilitated with one or more ponds to control the surface runoff. In some cases, it is even supported by pumping system to control water within the retention pond. Referring to that, a retention pond of 80,000 m³, built in 9.0 m depth with total area of 1.5 ha, was constructed within a residential area in Bandar Lampung. Not only controlling the surface runoff from 35 ha or two third of the developed residential area, the retention pond in fact also serves surface runoff resulted from about 270 ha of bare land which is located at the upper side. At present, the retention pond is generally equipped with 2 culverts which were installed at different elevation. The 50 cm

culvert was installed at the pond bottom as main outlet, while the 60 cm culvert which is used as emergency outlet was installed at 7 m above the pond bottom. During heavy rainfall in 3rd week of January 2013, unfortunately, one of the embankments collapsed and caused about 1 m of inundation at the downstream. The collapse of this embankment was believed as result of huge amount of runoff flowing into the pond both from the residential area itself and the upper catchments. Although the embankment has been now completely reconstructed, but it is still necessary to evaluate whether the existing retention pond is able to control such situation. This study is aimed at providing that information including necessary actions as regard to improve the reliability of existing pond.

Location and Data Availability

The study area is administratively located in Kecamatan Teluk Betung Barat, City of Bandar Lampung. As shown in Figure 1 below, it can be noticed that it is located at the upper area in which has a significant contribution of runoff to the downstream. According to the site plan, as presented in Figure 2, the residential area of 57 ha is divided into 9 clusters of housing and 3 clusters of public area. Each area so far has been facilitated with drainage system whereas only clusters A, B, D, and E that contribute runoff to the existing retention pond. As previously mentioned, the existing retention pond also receives runoff from the upper catchment of 270 ha. Although at the moment this upper catchment is in form of bare land, but it is possibly developed in the future and contribute even greater amount of runoff.

Figure 1. Location of study area

Figure 2. Clustering and existing flow direction

Figure 3. Description of upper catchment

Looking into the rainfall data availability, there are basically three rainfall stations located near to the study location and Sumberejo station in fact is the closest one compared Panjang station and to Polinela station. The total length of data available for stations of Sumberejo, Panjang, and Polinela are 13 years, 14 years, and 5 years respectively. Referring to the collapsing of embankment within the 3^{rd} week of January 2013, some daily rainfall data have also been collected from Sumberejo station. The daily rainfall data collected from 20 - 26 January 2013 are 22, 120, 58, 64, 84, 38, 24 mm respectively.

Methodology of Study

In order to evaluate and further analyses the reliability of existing retention pond to cope with various rainfalls and land development, this study makes use of HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) mathematical model to simulate the events. The analysis is started by the estimation of designed rainfall then continued to rainfall runoff modeling under various schemes as basis to provide alternative problem solutions.

LITERATURE STUDY

Rainfall Frequency Analysis

A hydrological phenomenon is basically a stochastic process. As regard to that, rainfall data should be treated properly to keep its characteristics. To do so, continuous frequency distribution can be employed to describe the data. According to Ponce (1989), there are several continuous probability distributions that can be used for such purposes such as normal distribution, log normal 2 parameters distribution, log normal 3 parameters distribution, Gumbel distribution, Pearson III distribution, and log Pearson III distribution. While Chi-square method and Kolmogorov-Smirnov method are two common methods used to evaluate the best fitted method to real data.

Synthetic Unit Hydrograph Method

Synthetic unit hydrograph is developed for a watershed area and employed to produce storm hydrograph from historical or designed rainfall. Among the available synthetic unit hydrograph methods, Soil Conservation Service (SCS) method is one that widely used in hydrological modeling including in Indonesia. According to Ponce (1989), SCS method is basically a dimensionless unit hydrograph method which is appropriate applied for midsize watershed of 2.5–250 km². To represent the influence of variety of land use to hydrograph, SCS method contains Curve Number (CN) as a parameter that depends on land permeability, antecedent soil moisture, and material or vegetation that cover the land.

Probable Maximum Rainfall

Probable Maximum Rainfall (PMP) method of Hersfield is one method that has been commonly used to estimate the value of extreme rainfall. As described in Soemarto (1999), as rainfall is random and unpredictable, this method is therefore completed with some graphics to adjust the variables so that the result is fit to the realistic condition.

RESULTS AND DISCUSSION

Designed Rainfall

According to the Thiessen polygon method, it is found that rainfall intensity at study location can be represented by rainfall observed at Sumberejo station. This means the whole hydrological analysis in this study will be done based on series rainfall data of Sumberejo station. As regard to the designed rainfall estimation, the Kolmogorov-Smirnov method shows that Pearson III contain least deviation to the real data. The estimated designed rainfalls in accordance to this result are 131.50, 156.39, 189.40, 215.20, and 242.10 mm for 5, 10, 25, 50 and 100 years of return period respectively. While referring to the Hersfield method, the estimated PMP and 0.5PMP are 656.79 mm and 328.39 mm respectively.

Designed Flood Discharge

As previously mentioned, the rainfall runoff simulation in this study is conducted using help of HEC-HMS mathematical model. Basically, the model will generate storm hydrograph from single storm events based on unit hydrograph method. To do so, in modeling the rainfall runoff, HEC-HMS has 3 different models: basin model, meteorological model, and control specifications model. While basin model represents the physical conditions of watershed and river as all hydrologic elements are connected here in a network to simulate runoff processes, the meteorological model is used to include the rainfall data. Control specification model, on the other hand, has a role in estimating the time interval of simulation. The detail hydrologic model scheme built in HEC-HMS is presented in the following Figure 4.

As the daily rainfall is assumed to be distributed in 3 hours as 69%, 18% and 13%, the designed flood discharge for each basin at various return periods is presented in Table 1.

Tuble 1. Designed nood discharge at various retain periods						
Dogin	Designed Discharge (m ³ /s)					
Dasiii	5 10	10	25	100	1000	0.5PMF
A	2.538	2.102	3.886	5.185	7.636	7.315
В	4.805	2.130	7.486	9.930	14.541	13.937
С	5.662	2.157	8.809	11.677	17.090	16.380
D	0.050	2.183	2.972	0.050	0.050	0.050
E	2.518	2.208	3.933	5.223	7.658	7.338
F1+F2	2.494	2.233	3.841	5.070	7.387	7.083
F3	0.035	2.256	1.064	0.035	0.035	0.035
US1+US2	3.324	2.279	9.116	16.921	37.268	34.202
US3	0.518	2.301	1.459	2.769	6.294	5.762

Table 1. Designed flood discharge at various return periods

Figure 4. Hydrologic model scheme

Evaluation of Retention Pond Performance in January 2013

As regard to collapsing of embankment in the 3^{rd} week of January 2013, HEC-HMS is used here to model the serial occurrence of filling up the retention pond based on the daily rainfall observed started from 20-26 January 2013 as 22, 120, 56, 68, 84, 38, and 24 mm respectively. Based on the simulation results, it is found that on January 24th the water level within the retention pond reached 0.55 m below the embankment crest or at elevation of +18.45 m. This result is basically fit to the obtained site information that stated the embankment was started to collapse when the water level reached less than 1 m below the crest. Both the simulation result and site information have in fact obviously shown that the collapsing of embankment is not caused by overtopping.

Figure 5. Water surface profile within retention pond (20-25 January 2013)

Evaluation of Capacity of Existing Retention Pond

By assuming that the total capacity of existing retention pond is estimated only up to 1 m below the embankment crest, the effective capacity of that retention pond is about 65,000 m³ instead of 80,000m³. Referring to this volume, the simulation result shows that in fact the retention pond is able only to accommodate 5 years of rainfall. Under the 10 years of rainfall, the retention pond will have about 3,339 m³ of water over spilled. This amount will increase in line with the increment of rainfall. Consider to this situation, addition of new retention pond is necessary.

Required Capacity of Additional Retention Pond

As huge contribution of runoff is given by the upper catchment of 270 ha, ideally, the additional retention pond should be placed at the entrance of study area. Based on the simulation results obtained for present and future development schemes of the upper catchment under various return periods of rainfall, it shows that the required capacity of additional retention pond at least 137,019 m³ or 2 times greater than the capacity of existing retention pond. Higher return period, as consequence, will enhance to even greater capacity.

No	No. Return Volumo	Volume of over smilled (m ³)	Required additional volume (m ³)		
190.		volume of over spined (m ²)	Present	Future	
1	Q2	30,686	0	50,212	
2	Q5	68,339	3,339	137,019	
3	Q10	103,223	38,223	202,434	
4	Q25	158,732	93,732	296,796	
5	Q50	207,447	142,447	373,611	
6	Q100	262,927	197,927	455,037	
7	Q1000	496,683	431,683	767,997	
8	Q 0.5PMF	463,122	398,122	726,381	

Table 2. Required capacity of additional retention pond

Requirement of Additional Outlets

At present, there are two outlets within the existing retention pond used to control the flood flow. As described in Figure 5 above, about 20 hours is required to get the water level within the pond back to its initial level. Reflecting to this situation, it becomes necessary to have other outlets to accelerate the draining process. Based on the simulation results, ideal elevation for additional outlet is 1.5 m below the emergency outlet. As the 10 years of rainfall will cause the over spilled, another 1 m outlet must be installed to prevent similar disaster. While for higher return periods as 50 and 100 years of rainfall, at least 2 more outlets with 1.5 m diameter each are crucially required. These outlets may reduce the water level to about 0.5-1.0 m; however, it must be accompanied with channel modification at the downstream.

Moreover, combination of additional new retention pond 432,000 m³ and two outlets with diameter 1 m will increase the ability of existing retention pond to accommodate volume from 100 years return period rainfall. By applying this combination, it can reduce the impact or inundation risk in downstream area.

Channel Modification

The implementation of those solutions above will generally increase the outflow from retention pond. Thus, it is necessary to enlarge the capacity of downstream channel. For village which is located just next to channel may not have sufficient space for channel normalization. Constructing embankment is therefore an alternative that can be applied in this case to increase the channel capacity. Based on the result of hydraulics analysis, it is found that about 1.10 m of levee is required to prevent inundation under 10 years return period rainfall or 1.80 m applied for 100 years of rainfall.

CONCLUSION AND RECOMMENDATION

The existing retention pond is generally able to accommodate 5 years of rainfall. Additional retention pond becomes necessary; however, as the land use is developed to be impermeable. Similarly, additional outlets may help to lower the water level within the existing pond. As consequence, channel modification must be done to prevent inundation at the downstream.

ACKNOWLEDGEMENTS

Authors would like to give appreciation to Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Universitas Katolik Parahyangan who has partly funded this research work.

REFERENCES

- Ponce, V.M., 1989. *Engineering Hydrology Principles and Practices*, Prentice Hall, New Jersey.
- Soemarto, C.D., 1999. Hidrologi Teknik, Erlangga, Jakarta.
- Albert Wicaksono, Doddi Yudianto, and Jeffry Gandwinatan, 2012. Penerapan Sistem Semi Polder sebagai Upaya Manajemen Limpasan Permukaan di Kota Bandung. Presented in National Seminar of The Application of Infrastructure Technology (ATPW), 7 July 2012, Surabaya.
- Albert Wicaksono, Doddi Yudianto, Bambang A.R., and Gneis S.G., 2013, Penerapan Kolam Retensi dalam Pengendalian Debit Banjir akibat Pengembangan Wilayah Kawasan Industri. Presented in The 9th National Seminar of Civil Engineering, Surabaya.