ANALISIS 2D DAN 3D STABILITAS LERENG PADA ABUTMENT 2 JEMBATAN PENGGARON DENGAN PERKUATAN *GROUND ANCHOR*

TESIS

Oleh:

Metta Devi Hartadi 2014831008

Pembimbing: Prof. Paulus Pramono Rahardjo, Ph.D.

PROGRAM MAGISTER TEKNIK SIPIL PROGRAM PASCASARJANA UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG JANUARI 2017

HALAMAN PENGESAHAN

ANALISIS 2D DAN 3D STABILITAS LERENG PADA ABUTMENT 2 JEMBATAN PENGGARON DENGAN PERKUATAN *GROUND ANCHOR*

Oleh :

Metta Devi Hartadi 2014831008

Disetujui Untuk Diajukan Sidang pada Hari/Tanggal :

Kamis, 19 Januari 2017

Pembimbing:

TES-PMITS HAR a/17 tes/202

nonko

Prof. Paulus Pramono Rahardjo, Ph.D.

PROGRAM MAGISTER TEKNIK SIPIL PROGRAM PASCASARJANA UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG JANUARI 2017

Pernyataan

Yang bertandatangan di bawah ini, saya dengan data diri sebagai berikut:

Nama : Metta Devi Hartadi Nomor Pokok Mahasiswa : 2014831008 Program Studi : Magister Teknik Sipil Program Pascasarjana Universitas Katolik Parahyangan

Menyatakan bahwa Tesis dengan judul:

"ANALISIS 2D DAN 3D STABILITAS LERENG PADA ABUTMENT 2 JEMBATAN PENGGARON DENGAN PERKUATAN *GROUND ANCHOR*"

adalah benar-benar karya saya sendiri di bawah bimbingan Pembimbing, dan saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan yang berlaku dalam masyarakat keilmuan.

Apabila di kemudian hari ditemukan adanya pelanggaran terhadap etika keilmuan dalam karya saya, atau jika ada tuntutan formal atau non formal dari pihak lain berkaitan dengan keaslian karya saya ini, saya siap menanggung segala resiko, akibat, dan/atau sanksi yang dijatuhkan kepada saya, termasuk pembatalan gelar akademik yang saya peroleh dari Universitas Katolik Parahyangan.

Dinyatakan Tanggal : di Bandung : 11 Januari 2017

Metta Devi Hartadi

ANALISIS 2D DAN 3D STABILITAS LERENG PADA ABUTMENT 2 JEMBATAN PENGGARON DENGAN PERKUATAN *GROUND ANCHOR*

Metta Devi Hartadi (NPM : 2014831008) Pembimbing : Prof. Paulus Pramono Rahardjo, Ph.D Magister Teknik Sipil Bandung Januari 2017

ABSTRAK

Jembatan Penggaron yang dibangun pada tahun 2011-2012 berlokasi pada proyek Jalan Tol Semarang-Ungaran. Sebelum dibuka untuk umum, terjadi longsor pada proyek tersebut yang mengakibatkan terjadinya pergerakan pier serta abutment 2 jembatan tersebut. Longsoran tersebut dilaporkan oleh Rahardjo pada tahun 2012 dan oleh karena itu segera dilakukan perkuatan terhadap pondasi untuk menyelamatkan jembatan tersebut. Saat ini sudah terpasang angkur sebagai upaya perkuatan pada abutment jembatan agar tidak semakin mendesak badan jembatan dan mengakibatkan kegagalan. Sebagai suatu upaya perkuatan, angkur tersebut tentunya harus dapat berfungsi dengan baik. Untuk itulah perlu dilakukan penelitian terkait faktor keamanan pada abutment Jembatan Penggaron setelah diberikan perkuatan. Analisis dilakukan dengan menggunakan metode elemen hingga 2D dan 3D dengan bantuan program Plaxis 2D dan Plaxis 3D TUNNEL untuk memastikan keamanan abutment 2 Jembatan Penggaron dengan perkuatan angkur berdasarkan analisis kualitatif. Analisis dilakukan dengan menggunakan data yang diperoleh dari inklinometer serta retakan yang terjadi di lapangan, untuk memperoleh gambaran mengenai bidang longsoran. Berdasarkan *back analysis*, diperoleh sudut geser residual tanah (ϕ_r) sebesar 16,17° dari hasil analisis dua dimensi dan sebesar 14,57° dari hasil analisis tiga dimensi Sebagai upaya perkuatan, dua buah balok RIB dan dua buah angkur telah ditambahkan di antara abutment 2 dan pier 9 serta di antara pier 9 dan pier 8. Penelitian yang dilakukan berdasarkan simulasi dari kejadian aktual yang terjadi di lapangan. Dari hasil analisis model dua dimensi dan tiga dimensi yang telah dilakukan pada penelitian ini diperoleh hasil bahwa dengan perkuatan tersebut faktor keamanan telah meningkat menjadi 1,4098 pada model dua dimensi dan 1,6008 pada model tiga dimensi. Nilai FK yang didapatkan ini lebih besar daripada nilai FK minimum yang digunakan sebagai acuan yaitu sebesar 1,3.

Kata Kunci : Lereng, Abutment Jembatan, Angkur, PLAXIS 2D, PLAXIS 3D TUNNEL.

2D AND 3D ANALYSIS OF SLOPE STABILITY OF PENGGARON BRIDGE ABUTMENT 2 USING GROUND ANCHOR

Metta Devi Hartadi (NPM : 2014831008) Adviser : Prof. Paulus Pramono Rahardjo, Ph.D Magister of Civil Engineering Bandung January 2017

ABSTRACT

Penggaron Bridge was constructed in 2011-2012 located in Semarang-Ungaran Toll Road Project. Prior to opening landslides occurred causing movement of the piers as well as abutment 2 of the bridge. The landslides was reported by Rahardjo (2012) and hence strengthening of the foundation was conducted to save the bridge. This study was specially for the analysis of abutment 2. Ground anchor has been installed as reinforcement way so that bridge's abutment doesn't push bridge's body and cause failure. As reinforcement way, ground anchor should be functional. That's why this research is needed to observe safety factor on abutment 2 Penggaron Bridge after reinforcement installation. Analysis is done by finite elemen method using two dimensional and three dimensional model on PLAXIS 2D and PLAXIS 3D TUNNEL program to ensure abutment 2 Penggaron Bridge safety with ground anchor as reinforcement based on qualitative analysis. The analysis have used data from inclinometers and crack to define the sliding plane. Based on back analysis, the residual friction angle was found 16.17° from 2D analysis and 14.5° from 3D analysis. As reinforcement way, two RIB beams and two ground anchors has been installed between abutment 2 and pier 9 and between pier 9 and pier 8. The study is based on simulating of actual occurred. From two dimensional model and three dimensional analysis result that have been done on this research, it's known that with those reinforcement, safety factor has increased to 1.4 on two dimensional model and 1.6 on three dimensional model. This safety factor value is bigger than minimum safety factor which is used for reference i.e. 1.3.

Keywords : Slope, Bridge Abutment, Ground Anchor, PLAXIS 2D, PLAXIS 3D TUNNEL.

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan Yang Maha Kuasa atas karunia dan rahmat-Nya sehingga tesis ini dapat selesai dengan baik dan tepat waktu.

Tesis yang berjudul "Analisis 2D dan 3D Stabilitas Lereng Pada Abutment 2 Jembatan Penggaron Dengan Perkuatan *Ground Anchor*" dibuat sebagai prasyarat untuk menyelesaikan program pendidikan magister (S-2) pada Program Magister Teknik Sipil Program Pascasarjana Universitas Katolik Parahyangan Bandung.

Dalam pembuatan tesis ini penulis mendapatkan banyak kendala dan masalah selama penyusunan tesis ini, namun semua kendala dan masalah yang ada dapat diatasi berkat bantuan dari dosen serta teman-teman yang selalu setia membantu penulis dalam penysusunan tesis ini.

Dalam kesempatan ini penulis mengucapkan terima kasih atas bimbingan dan bantuan dari:

- Bapak Prof. Paulus Pramono Rahardjo. Ph.D selaku dosen pembimbing yang setia membimbing dan memberikan masukan-masukan kepada penulis dalam penyusunan tesis ini.
- 2. Bapak Prof. Dr. A. Aziz Djajaputra selaku komite tesis yang telah banyak memberikan saran berharga dalam penyusunan tesis ini.
- 3. Bapak Budijanto Wijaya, Ph.D. selaku komite tesis yang telah banyak memberikan saran berharga dalam penyusunan tesis ini.
- 4. Papa, Mama, dan Dede yang telah memberikan banyakdukunganbaik moral maupun materiil kepada penulis selama penyusunan tesis ini.

- 5. Rekan-rekan seperjuangan penulis, yaitu Adisti, Kirana, Ricky, Bu Stefani, Ko Hansen, Susan, Wiwin, Obet, rekan-rekan dari Geotechnical Engineering Consultant (GEC), serta rekan-rekan lain yang tidak dapat disebutkan satu per satu, yang telah memberikan dukungan moral dan membantu penulis dalam menyelesaikan pembuatan tesis ini.
- 6. Teman-teman dan sahabat-sahabat penulis yang tidak dapat disebutkan satu per satu yang telah memberikan dukungan moral serta berbagi suka dan duka bersama penulis dalam menyelesaikan pembuatan tesis ini.

Kiranya tanpa bantuan dari mereka penulis tidak akan bisa menyelesaikan skripsi ini dengan baik dan tepat waktu. Semoga Tuhan Yang Maha Esa memberkati mereka selalu.

Dalam penelitian ini masih terdapat kekurangan oleh karena itu dengan hati yang lapang dan sikap yang terbuka, penulis siap menerima masukan, kritik, dan saran dari para pembaca agar karya ilmiah ini dapat terus berkembang dan semakin baik, juga diharapkan hasil penelitian ini dapat menjadi tolak ukur serta referensi bagi penelitian selanjutnya.

Demikianlah kata pengantar ini dibuat, semoga tesis ini dapat berguna bagi semua pihak yang membuntuhkannya.

Bandung, Januari 2017

Penulis

Metta Devi Hartadi

DAFTAR ISI

HALAMAN JUDUL	
HALAMAN PENGESAHAN TESIS	
ABSTRAK	
ABSTRACT	
KATA PENGANTAR	i
DAFTAR ISI	ii
DAFTAR NOTASI DAN SINGKATAN	viii
DAFTAR GAMBAR	xiii
DAFTAR TABEL x	
DAFTAR LAMPIRAN xxi	
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Maksud dan Tujuan Penelitian	2
1.3 Lingkup Pembahasan	3
1.4 Metoda Penelitian	3
1.4.1 Lokasi Penelitian	3
1.4.2 Studi Literatur	4
1.4.3 Metode Analisis	4
1.5 Sistematika Penulisan	4
BAB 2 TINJAUAN PUSTAKA	7
2.1 Kestabilan Lereng	7

2.1.1	Definisi Longsoran, Gerakan Tanah dan Kestabilan Lereng	7
2.1.2	Jenis-Jenis Lereng	7
2.1.3	Aspek Geologi pada Kestabilan Lereng	9
2.1.4	Jenis-Jenis Gerakan Tanah dan Longsoran	11
2.1.5	Penyebab Gerakan Tanah dan Longsoran	19
2.1.6	Monitor Longsoran dan Instrumentasi Geoteknik di Lapangan	20
2.2 Pe	rencanaan dan Konstruksi Pondasi Tiang Bor	25
2.2.1	Pendahuluan	25
2.2.2	Penggunaan Pondasi Tiang Bor	29
2.2.3	Pelaksanaan Pondasi Tiang Bor	29
2.2.4	Pengendalian Mutu Pondasi Tiang Bor	33
2.3 Gi	ound Anchor	35
2.3.1	Definisi	35
2.3.2	Tipe Ground Anchor	37
2.3.3	Dinding Angkur	42
2.3.4	Konsep Desain Secara Umum untuk Dinding Angkur	47
2.3.5	Mekanisme Kegagalan pada Sistem Angkur	50
2.3.6	Desain Sistem Angkur	52
2.3.7	Desain Ground Anchor	54
2.3.8	Sistem Stabilisasi Lereng dan Landslide dengan Angkur	62
2.3.9	Korosi dan Efeknya pada Ground Anchor	62
2.4 In	klinometer	71
2.4.1	Definisi Inklinometer	71
2.4.2	Kegunaan Inklinometer pada Aplikasi Geoteknik	72

2.4.3	B Deskripsi Komponen Instrumen Inklinometer	74
2.4.4	Casing Inklinometer	83
2.4.5	5 Evaluasi dan Interpretasi Data Inklinometer	91
BAB 3 M	ETODOLOGI PENELITIAN	97
3.1 7	Sahapan Penelitian	97
3.2 Diagram Alir Penelitian		98
3.3 F	PLAXIS 2D	99
3.3.1	Pendahuluan	99
3.3.2	2 Pengaturan Umum	99
3.3.3	Geometri	101
3.3.4	Model Material	106
3.3.5	Jenis Perilaku Material	108
3.3.6	5 Perhitungan	109
3.3.7	Jenis Perhitungan	110
3.3.8	B Tahap Konstruksi	112
3.3.9	Pemeriksaan Kesalahan Otomatis	113
3.3.1	0 Data Keluaran Hasil Perhitungan	116
3.3.1	1 Kurva Beban-Perpindahan dan Lintasan Tegangan	129
3.4 F	PLAXIS 3D TUNNEL	132
3.4.1	Pendahuluan	132
3.4.2	2 Geometri	132
3.4.3	8 Mesh Generation	138
3.4.4	Kalkulasi Data	141

3.4.5	Data Keluaran Hasil Perhitungan	143
3.4.6	Kurva Beban-Perpindahan dan Jalur Tegangan (Stress Path)	157
3.5 Teori	i Deformasi pada PLAXIS	160
3.5.1	Persamaan Dasar Deformasi Continuum	160
3.5.2	Diskretisasi Elemen Hingga	162
3.5.3	Integrasi Implisit pada Model Plastis Diferensial	163
3.5.4	Prosedur Iteratif Global	165
3.6 Perhi	itungan Matriks Kekakuan Elemen pada PLAXIS	166
3.6.1	Node-to-Node Anchors	166
3.6.2	Elemen Balok	167
BAB 4 ANAL	LISIS DATA HASIL PENELITIAN	169
4.1 Loka	si Studi	169
4.2 Kond	disi Geologi	170
4.2.3	Pemetaan Geologi	173
4.2.4	Hasil Pemetaan	175
4.3 Kron	ologi Kejadian	182
4.4 Peny	elidikan Tanah	188
4.4.1	Monitoring dengan Inklinometer	191
4.5 Desa	in Stabilisasi Lereng	192
4.6 Anal	isis Stabilisasi Lereng	193
4.6.1	Analisis Dua Dimensi	194
4.6.2	Analisis Tiga Dimensi	202
4.6.3	Perbandingan Hasil Analisis Dua Dimensi dan Tiga Dimensi	210

BAB 5	3 5 KESIMPULAN DAN SARAN	
5.1	Kesimpulan	215
5.2	Saran	216
DAFT	TAR PUSTAKA	

LAMPIRAN

DAFTAR NOTASI DAN SINGKATAN

Daftar Notasi

2D	: dua dimensi
3D	: tiga dimensi
γ	: berat isi
$\gamma_{\rm w}$: berat isi air
γ_{xy}	: regangan geser pada bidang x-y
γ_{yz}	: regangan geser pada bidang y-z
γ_{zx}	: regangan geser pada bidang x-z
$\Delta\epsilon_s$: peningkatan regangan geser ekivalen
$\Delta \epsilon_{\rm v}$: peningkatan regangan volumetrik
Δu	: peningkatan perpindahan
3	: regangan
ε ₁	: regangan utama terbesar absolut
ε ₂	: regangan utama menengah absolut
ε ₃	: regangan utama terkecil absolut
ε _s	: regangan geser ekivalen
$\epsilon_{\rm v}$: regangan volumetrik
ε _{xx}	: regangan horisontal (arah x)
ϵ_{yy}	: regangan vertikal (arah y)
ν	: poisson ratio
ρ	: kepadatan material
σ^{c}	: tensor tegangan konstitutif

σ^{e}	: tensor tegangan keseimbangan
$\sigma_{\rm n}$: tegangan normal dalam antar muka
σ _{xy}	: tegangan geser
σ'	: tegangan efektif
σ'1	: tegangan utama terbesar absolut
σ'2	: tegangan utama menengah absolut
σ'3	: tegangan utama terkecil absolut
σ' _n	: tegangan normal efektif
σ' _{xx}	: tegangan horisontal efektif (arah x)
σ' _{yy}	: tegangan vertikal efektif (arah y)
σ' _{zz}	: tegangan efektif dalam arah keluar dari bidang gambar (arah z)
τ	: tegangan geser dalam antar muka
τ_{rel}	: tegangan geser relatif
φ	: sudut geser
ϕ_r	: sudut geser residual
ψ	: sudut dilatansi
c	: kohesi
d _{eq}	: ketebalan pelat ekuivalen
E	: modulus Young
g	: percepatan gravitasi
h	: groundwater head
Ie	: ukuran elemen rata-rata
М	: momen lentur
Ν	: gaya aksial

paktif	: tekanan air pori aktif
Pberlebih	: tekanan air pori berlebih
p _{eq}	: tegangan isotropik ekivalen
p_p	: tekanan prakonsolidasi isotropik
p'	: tegangan efektif isotropik (tegangan efektif rata-rata)
Q	: gaya geser
q'	: tegangan deviator (tegangan geser ekivalen)
R _{inter}	: faktor reduksi kekuatan antar muka (interfaces)
Т	: beban angkur
T_h	: beban angkur horisontal
T_{hi}	: beban angkur per unit lebar
T_{maks}	: nilai maksimum tegangan geser
$T_{\rm v}$: komponen vertikal dari beban angkur total
u	: perpindahan

Daftar Singkatan

AASHTO	American Association of State Highway and Transposrtation
Officials	
ABS	Acrylonitrile-Butadiene-Styrene
Abt2	Abutment 2
ADAS	Advanced DriverAssistance System
ASCE	American Society of Civil Engineers
ASTM	Americans Standard Testing and Material
BM	Bench Mark

CP Control Point CW Completely Weathered (Lapuk Sempurna) DPL Di Atas Permukaan Laut FHWA Federal Highway Administration FK Faktor Keamanan HCl Hidrogen Klorida/Asam Klorida HQ High Quality HS Hardening Soil HWHighly Weathered (Lapuk Tinggi) ID Inner Diameter IPI In-Place or Stationary Inclinometers LpPs Lempung Pasiran MAT Muka Air Tanah MC Mohr Coulomb MEMS Micro-Electro Mechanical System NATM New Austrian Tunneling Method OCR **Overconsolidation Ratio** OD *Outer Diameter* OP Optis OS Organic Soil (Tanah Organik) P-8 Pier 8 P-9 Pier 9 Precast Concrete I PCI PsKi Pasir Kerikilan

PsTf	Pasir Tufaan
ROW	Right of Way (Daerah Milik Jalan)
RS	Residual Soil (Tanah Residual)
SPT	Standard Penetration Test
SSC	Soft Soil Creep
STA	Stasiun Pengamatan
TDR	Time Domain Reflectometry

VB Breksi Vulkanik

DAFTAR GAMBAR

Gambar 2.1 Perbandingan antara (a) Pengelupasan Tunggal (single topple)
(Hutchinson, 1988) dengan (b) Pengelupasan Jamak (multiple topples) (Varnes,
1978)
Gambar 2.2 Jenis-Jenis Longsoran (a) Jatuhan (Batu) (Rockfall) (b) Pengelupasan
(Topple) (c) Longsoran dengan Pola Rotasi (d) Lateral Spread (e) Longsoran
Aliran (Varnes, 1978) 14
Gambar 2.3 Contoh-Contoh Longsoran Rotasi dan Translasi (a) Longsoran Rotasi
Batuan (b) Longsoran Rotasi pada Tanah (c) Longsoran Translasi pada Tanah (d)
Longsoran Debris (e) Longsoran Block Translasi (Varnes, 1978) 15
Gambar 2.4 (a) dan (b) Aliran Lateral Tanah dan Batuan, (c) Aliran Tanah Akibat
Likuifaksi (Liquefaction Flow Failures) (Varnes, 1978) 15
Gambar 2.5 (a) Aliran Lambat (<i>clay</i>) (b) Aliran <i>Loes</i> (c) Aliran Pasir Kering 16
Gambar 2.6 Potongan Geologi pada Longsoran Graben 16
Gambar 2.7 Rock Fall (jatuhan) di Alor (Doc. GEC Center, 2005) dan di
Cikangkareng (Kompas 4 Sep 2009) 17
Gambar 2.8 Longsoran Batu di Cikangkareng Saat Gempa Tasikmalaya 2
September 2009 dengan Korban Jiwa 54 Orang (Doc. GEC Center 2009) 17
Gambar 2.9 Ilustrasi Aliran Tanah (Earth and Debris Flow) di Jemblung -
Kecamatan Karangkobar, Kabupaten Banjarnegara, Jawa Tengah, Tanggal 12
Desember 2014, Korban Jiwa 108 Orang (Doc. GEC Center 2014) 17

Gambar 2.10 Longsoran Debris di Lubuk Laweh – Pariaman, pada Gempa Padang
Tanggal 30 September 2019, Korban Jiwa Lebih dari 600 Orang (Doc. GEC
Center, 2009)
Gambar 2.11 (a) Longsoran Sheet Pile di Jambi (Doc. GEC Center) dan
Longsoran Galian di KM 114+800 Jalan Tol Cipularang (Soerono, 2012)
Gambar 2.12 Longsoran pada Galian Stasiun Terowongan di Singapura (Sumber
Internet) dan Longsoran Ramp Out Jalan Tol Pejagan; Timbunan pada Tanah
Lunak (Doc. GEC Center 2010)
Gambar 2.13 Longsoran pada Ruas Jalan Samarinda-Bontang; Timbunan dengan
Tanah Tufa (Doc. GEC Center 2010)
Gambar 2.14 Piezometer Jenis Pipa Terbuka, Casagrande, dan Piezometer
Vibrating Wire (TRB, 1978)
Gambar 2.15 Tiltmeter (Atas) dan Inklinometer (Bawah) (TRB, 1978)24
Gambar 2.16 Ilustrasi Pengukuran Gerakan Suatu Longsoran (TRB, 1978)24
Gambar 2.17 Hasil Pembacaan dari Inklinometer (TRB, 1978)
Gambar 2.18 Alat Pembor Ringan (The Association of Drilled Shaft Contractors,
2001)
Gambar 2.19 Contoh Konstruksi Tiang Bor Menggunakan Casing
Gambar 2.20 Komponen Ground Anchor (U.S. Department of Transportation,
Federal Highway Administration, 1999)
Gambar 2.21 Komponen Anchorage pada Bar Tendon (U.S. Department of
Transportation, Federal Highway Administration, 1999)
Gambar 2.22 Komponen Anchorage pada Strand Tendon (U.S. Department of
Transportation, Federal Highway Administration, 1999)

Gambar 2.23 Tipe Utama Grouted Ground Anchors (dimodifikasi oleh Littlejohn, 1990, "Ground Anchorage Practice", Design and Performance of Earth Retaining Structures, Geotechnical Special Publication No. 25, Dicetak Ulang dengan Ijin Gambar 2.24 Potongan Melintang Bar Tendon (U.S. Department of Gambar 2.25 Potongan Melintang Strand Tendon (U.S. Department of Gambar 2.26 Urutan Konstruksi Soldier Beam Permanen dan Dinding Lagging (U.S. Department of Transportation, Federal Highway Administration, 1999).. 43 Gambar 2.27 Perbandingan Dinding Gravitasi Beton dan Dinding Angkur pada Depressed Roadway (U.S. Department of Transportation, Federal Highway Gambar 2.28 Aplikasi Ground Anchors dan Anchored Systems (U.S. Department Gambar 2.29 Kondisi Kegagalan Potensial yang Dipertimbangkan pada Desain Dinding Angkur (U.S. Department of Transportation, Federal Highway Gambar 2.30 Kontribusi Ground Anchor pada Kestabilan Dinding (U.S. Gambar 2.31 Perhitungan Beban Angkur untuk Dinding Satu Tingkat (U.S. Department of Transportation, Federal Highway Administration, 1999)...... 55 Gambar 2.32 Perhitungan Beban Angkur untuk Dinding Beberapa Tingkat (U.S.

Gambar 2.33 Persyaratan Jarak Vertikal dan Horizontal Ground Anchor (U.S.
Department of Transportation, Federal Highway Administration, 1999)61
Gambar 2.34 Contoh Proteksi Korosi pada Anchorages (U.S. Department of
Transportation, Federal Highway Administration, 1999)67
Gambar 2.35 Contoh Proteksi Korosi Kelas I dan II pada Strand Tendons (U.S.
Department of Transportation, Federal Highway Administration, 1999)
Gambar 2.36 Contoh Proteksi Korosi Kelas I dan II pada Bar Tendons (U.S.
Department of Transportation, Federal Highway Administration, 1999)
Gambar 2.37 Tipikal probe inklinometer, kabel, dan perangkat pembacaan
(Landslide Technology)77
Gambar 2.38 Sketsa Skematik Probe Inklinometer dalam Casing yang Dipasang
untuk Memonitor Deformasi Tanah (U.S. Department of Transportation, Federal
Highway Administration, 1999)77
Highway Administration, 1999)
Highway Administration, 1999) 77 Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin (Roctest) 80
Highway Administration, 1999)77Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin(Roctest)80Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation,
Highway Administration, 1999) 77 Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin 80 (Roctest) 80 Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation, Federal Highway Administration, 1999) 80
Highway Administration, 1999) 77 Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin 80 (Roctest) 80 Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation, Federal Highway Administration, 1999) 80 Gambar 2.41 Foto dan Sketsa Skematik Pemasangan IPI pada Probe IPI Tunggal
Highway Administration, 1999)
Highway Administration, 1999)77Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin(Roctest)80Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation,Federal Highway Administration, 1999)80Gambar 2.41 Foto dan Sketsa Skematik Pemasangan IPI pada Probe IPI Tunggal(Landslide Technology, WSDOT)82Gambar 2.42 Sistem ADAS Jarak Jauh Tipikal dengan Multiplexer, Solar-
Highway Administration, 1999) 77 Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin 80 (Roctest) 80 Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation, Federal Highway Administration, 1999) 80 Gambar 2.41 Foto dan Sketsa Skematik Pemasangan IPI pada Probe IPI Tunggal 82 Gambar 2.42 Sistem ADAS Jarak Jauh Tipikal dengan Multiplexer, Solar- 83
Highway Administration, 1999) 77 Gambar 2.39 Casing Inklinometer dengan Detail Sambungan dan Alur Mesin 80 (Roctest) 80 Gambar 2.40 Peralatan Kontrol untuk Kabel (U.S. Department of Transportation, Federal Highway Administration, 1999) 80 Gambar 2.41 Foto dan Sketsa Skematik Pemasangan IPI pada Probe IPI Tunggal 82 Gambar 2.42 Sistem ADAS Jarak Jauh Tipikal dengan Multiplexer, Solar- 82 Gambar 2.43 Casing Inklinometer ABS, Diameter dalam mm (Slope Indicator

Gambar 2.44 Contoh Sambungan dan Casing Inklinometer Aluminium
(Mikkelsen)
Gambar 2.45 Koneksi Casing Inklinometer : (a) Regular dan (b) Telescoping
(Slope Indicator Company)
Gambar 2.46 Instalasi Casing Inklinometer pada Lubang Bor Vertikal (Landslide
Technology)
Gambar 2.47 Contoh Grouting pada Ruang Annulus di Antara Casing
Inklinometer dan Lubang Bor (Slope Indicator Company)
Gambar 2.48 Sketsa Skematil Katup dan Pipa Grout (Slope Indicator Company)
Gambar 2.49 Komponen Inklinometer Horizontal dan Sistem Pulley (Slope
Indicator Company)
Gambar 2.50 Pipa Baja Berukuran 8 in Di dalam Perkuatan Dinding Diafragma
untuk Kerangka Casing Inklinometer (Case Foundation Co)
Gambar 2.51 Contoh Metode Inklinometer "Poorman" (California Department of
Transportation)
Gambar 2.52 Kabel Ektensometer di dalam Casing Inklinometer untuk
Memperluas Wilayah Monitoring (Deschamps, 1998)
Gambar 2.53 (a) Kabel TDR Terpasang di dalam Casing Inklinometer untuk
Memperluas Wilayah Monitoring (O'Connor, 2000) dan Probe IPI Permanen
(U.S. Department of Transportation, Federal Highway Administration, 1999) 91
Gambar 2.54 Prinsip Pengukuran (Slope Indicator Company, 2006a)
Gambar 2.55 Kesalahan Total dan Acak pada Data Inklinometer (Mikkelsen,
1996)

Gambar 2.56 Data Bias-Shifted, Checksums, dan Hasil Koreksi (Mikkelsen, 2003)
Gambar 2.57 Bias Shift dan Kesalahan Rotasi Tipikal (Mikkelsen, 2003)94
Gambar 2.58 Rentang Diskrit Perpindahan Tanah pada Landslide Shear Zone
(Mikkelsen, 2003)
Gambar 3.1 Posisi Titik-Titik Nodal dan Titik-Titik Tegangan pada Elemen
Tanah (Manual PLAXIS 2D ver 8. Indonesia)100
Gambar 3-2 Perjanjian Tanda untuk Tegangan (Manual PLAXIS 3D TUNNEL)
Gambar 3.3 Perjanjian Tanda untuk Gaya Aksial pada Plates, Geogrid, dan
Angkur (Manual PLAXIS 3D TUNNEL)
Gambar 3.4 Gaya Aksial N1 dan N2 (Manual PLAXIS 3D TUNNEL)152
Gambar 3.5 Gaya Geser Q13, Q12, dan Q23 (Manual PLAXIS 3D TUNNEL) 152
Gambar 3.6 Momen Lentur M11, M22, dan Momen Torsi M12 (Manual PLAXIS
3D TUNNEL)152
Gambar 4.1 Potongan Memanjang Jembatan Penggaron (GEC Center)169
Gambar 4.2 Plan View Jembatan Penggaron (GEC Center)
Gambar 4.3 Singkapan Pasir Tufaan (Sadisun dan Fahrudin, 2011)171
Gambar 4.4 Breksi Vulkanik di Area Pier 9 (GEC Center, 2014) 171
Gambar 4.5 Crown Longsoran di Area Abutmen 2 (GEC Center, 2014)
Gambar 4.6 Lokasi Retakan di Area Abutmen 2 (Inklinometer oleh PT. Waskita)
(GEC Center, 2014)
Gambar 4.7 Retakan di Area Luar ROW dan Lahan Penduduk (GEC Center,
2014)

Gambar 4.8 Jembatan Tol Penggaron Arah Semarang Solo Merenggang Pada KM
8-075 dan Turun Sebesar 2,5cm di KM 8-515 (Sadisun dan Fahrudin, 2011) 173
Gambar 4.9 Kontruksi Jembatan Tol Penggaron Terhadap Satuan Bentuk Lahan
Perbukitan Struktural Berlereng Terjal. (Sadisun dan Fahrudin, 2011) 173
Gambar 4.10 Potensi Longsor pada Lereng Tebing Terjal yang Ada di Sekitar
Konstruksi Jembatan Tol Penggaron. (Sadisun dan Fahrudin, 2011) 174
Gambar 4.11 Lempung Pasiran yang Nampak Mengembang Ketika Terkena Air
pada Lokasi Stasiun Pengamatan 12 (Sadisun dan Fahrudin, 2011) 175
Gambar 4.12 Singkapan Pasir Tufaan Sedikit Kerikilan yang Berada Pada Stasiun
Pengamatan (STA) 3 (Sadisun dan Fahrudin, 2011) 176
Gambar 4.13 Komponen Organic Soil dengan Penamaan Lempung Pasiran
(Sadisun dan Fahrudin, 2011)
Gambar 4.14 Endapan Koluvial Berupa Pasir Kerikilan yang Tersebar di Sekitar
Jembatan Penggaron (Sadisun dan Fahrudin, 2011)
Gambar 4.15 Breksi vulkanik yang tersebar di area jembatan tol penggaron
(Sadisun dan Fahrudin, 2011)
Gambar 4.16 Satuan Lava di Bawah Satuan Breksi Vulkanik Tersingkap di
Daerah Tebing Sungai (Sadisun dan Fahrudin, 2011) 182
Gambar 4.17 Terjadi Penurunan Tanah di Sebelah Abt2 (Muhrozi, 2015) 183
Gambar 4.18 Pembongkaran Perkerasan Kaku Sebelah Selatan Abutment-2
Jembatan Penggaron (Muhrozi, 2015)
Gambar 4.19 Pemantaun Titik-Titik Koordinat dengan Waterpass pada Bulan
Januari – Maret 2014 (Muhrozi, 2015) 184

Gambar 4.20 Kaca Pemantau Gerakan PCI Girder dengan Back-Wall Abutment-2
Pecah dan Ujung Girder Pecah (Muhrozi, 2015)184
Gambar 4.21 Shotcrete pada P-8 – P-9 Pecah di Bagian Bawah dan Atas (Dekat
P-9) (Muhrozi, 2015)
Gambar 4.22 Rongga Besar Terjadi di Depan Abt.2 dan di Luar ROW ke Arah
Tenggara (ke Arah lembah) (Muhrozi, 2015)
Gambar 4.23 Terjadi Rongga Besar di Depan Abt2, di Luar ROW ke Arah
Tenggara (ke Arah Lembah) (Muhrozi, 2015)186
Gambar 4.24 Terjadi Rongga Besar di Depan Abt2, Rongga Besar di Luar ROW
ke Arah Tenggara (ke Arah Lembah) (Muhrozi, 2015)187
Gambar 4.25 Rigid Pavement Selalu Retak, Guard Rail Turun dan PCI Girder
Pecah (Muhrozi, 2015)
Gambar 4.26 Pelaksanaan Pemasangan Balok RIB dan Ground Anchor (Muhrozi,
2015)
Gambar 4.27 Data Pengeboran P-8, P-9, dan Abt2 (Juni, 2011) (GEC Center)190
Gambar 4.28 Potongan Geoteknik di Lokasi Abt2 (GEC Center)190
Gambar 4-29 Layout Lokasi Inklinometer (GEC Center)
Gambar 4.30 Pemasangan RIB dan ground anchor pada P-8 (GEC Center) 192
Gambar 4.31 Pemasangan RIB dan ground anchor pada Pier 9 (GEC Center) 193
Gambar 4.32 Salah Satu Hasil Plot Data Inklinometer untuk Memodelkan Garis
Longsoran pada Model
Gambar 4.33 Posisi Muka Air Tanah pada Model yang Diperoleh dari Data
Borlog
Gambar 4.34 Generated Mesh pada Model 2D196

Gambar 4.35 Hasil Back Analysis Kestabilan Lereng FK = 1,0363 (Maximum
$Total \ Displacements = 92,3 \ cm) \dots 196$
Gambar 4.36 Deformed Mesh dan Perilaku Tiang pada Tahap Back Analysis 196
Gambar 4.37 Deformed Mesh yang Terbentuk dan Perilaku Tiang Setelah
Perkuatan Diaktifkan
Gambar 4.38 Instalasi Balok RIB dan Ground Anchor dengan FK = 1,4098
(<i>Maximum Total Displacement</i> = 4,68cm)
Gambar 4.39 Peralihan dan Gaya Dalam pada RIB P-8 199
Gambar 4.40 Peralihan dan Gaya Dalam pada RIB P-9 199
Gambar 4.41 Anchor Info pada RIB P-8 dan P-9 199
Gambar 4.42 Total Displacement dan Axial Force Material Geogrid RIB P-8 200
Gambar 4.43 Total Displacement dan Axial Force Material Geogrid RIB P-9 201
Gambar 4.44 Generated Mesh pada Front Plane dan Rear Plane (Sisi Terluar
Jembatan)
Gambar 4.45 Generated Mesh pada Plane A (Center Line Jembatan) 202
Gambar 4.46 Generated Mesh Tiga Dimensi 203
Gambar 4.47 Hasil Back Analysis Kestabilan Lereng pada Model Tiga Dimensi
dengan FK = 1,0203 (<i>Maximum Total Displacement</i> = 1,26m) 203
Gambar 4.48 Deformed Mesh Tiga Dimensi yang Terbentuk Setelah Perkuatan
Diaktifkan
Gambar 4.49 Instalasi RIB dan Ground Anchor pada Model Tiga Dimensi dengan
FK = 1,6008 (<i>Maximum Total Displacement</i> = 3,475cm) 205
Gambar 4.50 Total Displacement Balok RIB P-8 pada Model Tiga Dimensi 206
Gambar 4.51 Shear Force Balok RIB P-8 pada Model Tiga Dimensi 206

Gambar 4.52 Bidang Momen Balok RIB P-8 pada Model Tiga Dimensi
Gambar 4.53 Total Displacement Balok RIB P-9 pada Model Tiga Dimensi 207
Gambar 4.54 Shear Force Balok RIB P-9 pada Model Tiga Dimensi
Gambar 4.55 Bidang Momen Balok RIB P-9 pada Model Tiga Dimensi
Gambar 4.56 Anchor Info pada Hasil Analisis Model Tiga Dimensi
Gambar 4.57 Total Displacement dan Axial Force Material Geogrid RIB P-8
Model Tiga Dimensi
Gambar 4.58 Total Displacement dan Axial Force Material Geogrid RIB P-9
Model Tiga Dimensi
Gambar 4.59 Peralihan dan Gaya Dalam Pile pada Area P-8 yang Menyatu
dengan Balok RIB P-8 (Model Dua Dimensi)210
Gambar 4.60 Total Displacement Pile pada Area P-8 yang Menyatu dengan Balok
RIB P-8 (Model Tiga Dimensi)211
Gambar 4.61 Shear Force Pile pada Area P-8 yang Menyatu dengan Balok RIB P-
8 (Model Tiga Dimensi)
Gambar 4.62 Bidang Momen pada Pile Area P-8 yang Menyatu dengan Balok
RIB P-8 (Model Tiga Dimensi)

DAFTAR TABEL

Tabel 2.1 Nilai Ultimit Presumptive Transfer Beban untuk Desain Awal Straight
Shaft Gravity-Grouted Ground Anchor pada Tanah (U.S. Department of
Transportation, Federal Highway Administration, 1999) 59
Tabel 2.2 Nilai Ultimit Presumptive Transfer Beban untuk Desain Awal Ground
Anchor pada Batuan (U.S. Department of Transportation, Federal Highway
Administration, 1999)
Tabel 4.1 Data Parameter Tanah
Tabel 4.2 Perbandingan Hasil Analisis 2D dan 3D 213

DAFTAR LAMPIRAN

L.1 Data Inklinometer

- L.2 Data Borlog SBT01 SBT05
- L.3 Data Hasil Keluaran PLAXIS 2D
- L.4 Data Hasil Keluaran PLAXIS 3D TUNNEL
- L.5 Detail Gambar Struktur

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Jembatan merupakan suatu infrastruktur yang dibangun untuk memenuhi kebutuhan manusia akan sarana transportasi. Sering kali kebutuhan itu harus dipenuhi tanpa mempertimbangkan aspek geologi di sekitarnya. Seperti halnya yang terjadi pada proyek pembangunan jalan tol Semarang-Solo.

Pada jalan tol tersebut, terdapat jembatan yang dibangun di daerah Penggaron pada ruas tol Ungaran. Setelah konstruksi jembatan selesai dilaksanakan, diketahui terdapat pergerakan tanah yang dikhawatirkan berimbas pada struktur jembatan. Pergerakan tanah tersebut dimonitor dengan menggunakan alat inklinometer. Terdapat dugaan penyebab pergerakan tanah di lokasi jembatan Penggaron yaitu akibat longsoran purba di mana terdapat reaktivasi longsoran.

Menurut penelitian geologi yang telah dilakukan sebelumnya, jembatan tersebut memang dibangun di atas tanah dengan formasi kerek (*clay shale*) yang rawan longsor. Kondisi ini bahkan menyebabkan kawasan tersebut dijauhi masyarakat yang memiliki keinginan untuk membangun tempat tinggal karena khawatir akan terganggu dengan adanya pergerakan tanah yang sering mengakibatkan longsor.

Sebelum jembatan dibangun, sejumlah pihak telah menganjurkan agar jalur di tanah labil tersebut tidak dijadikan sebagai lokasi proyek pembangunan jalan tol. Saat itu alternatif lokasi yang diusulkan untuk proyek jalan tol adalah

1

beberapa ratus meter di sebelah utara jembatan Penggaron. Namun usulan tersebut tidak diindahkan mengingat pada kawasan utara terdapat banyak pemukiman warga yang tentu saja akan memakan waktu dan biaya yang tidak sedikit pada proses pembebasan lahannya. Bahkan jika direlokasi pun belum tentu ada jaminan tidak akan lagi bertemu formasi kerek karena formasi kerek ini luas wilayahnya, dapat mencapai beberapa kilometer.

Sebelumnya Handayani (2012) telah melakukan penelitian pada kasus Jembatan Penggaron ini terkait perilaku pondasi tiang bor akibat pergerakan massa tanah pada abutment dan pilar jembatan. Pada saat itu pergerakan abutment belum mencapai 5cm, sehingga belum terdapat perkuatan apa pun pada abutment jembatan. Mengingat abutment 2 bergerak lagi sebagaimana terpantau pada inklinometer, maka pekerjaan *ground anchor* perlu dilaksanakan sesuai dengan pertimbangan terdahulu.

Saat ini sudah terpasang angkur sebagai upaya perkuatan pada abutment jembatan agar tidak semakin mendesak badan jembatan dan mengakibatkan kegagalan. Sebagai suatu upaya perkuatan, angkur tersebut tentunya harus dapat berfungsi dengan baik. Untuk itulah perlu dilakukan penelitian terkait faktor keamanan pada abutment Jembatan Penggaron setelah diberikan perkuatan.

1.2 Maksud dan Tujuan Penelitian

Berdasarkan latar belakang dan fakta-fakta yang telah dijabarkan sebelumnya, maka maksud dari penelitian ini adalah :

 Membuat model longsoran abutment 2 jembatan Penggaron secara 2D dan 3D menggunakan bantuan program Plaxis 2D dan Plaxis 3D TUNNEL, Melakukan analisis untuk mempelajari mekanisme longsoran pada abutment 2 Jembatan Penggaron.

Sedangkan tujuan dari penelitian ini adalah untuk memastikan keamanan abutment 2 Jembatan Penggaron dengan perkuatan angkur berdasarkan analisis kualitatif.

1.3 Lingkup Pembahasan

Berdasarkan latar belakang masalah dan inti masalah tersebut, penulis melakukan penelitian dengan lingkup sebagai berikut :

- Analisis dilakukan dengan menggunakan metode elemen hingga 2D dan 3D dengan bantuan program Plaxis 2D dan Plaxis 3D TUNNEL,
- Studi kasus dilakukan terhadap pergerakan abutment di lokasi Jembatan Penggaron, Jalan Tol Semarang-Solo, dan
- Data yang digunakan dalam penelitian ini berdasarkan hasil pemboran dan monitoring inklinometer di lapangan.

1.4 Metoda Penelitian

Untuk menjawab pertanyaan-pertanyaan yang telah diajukan sebelumnya dan mencapai tujuan yang diinginkan dalam penelitian ini, maka penulis menggunakan metoda-metoda berikut sebagai metoda penelitian.

1.4.1 Lokasi Penelitian

Lokasi penelitian berada pada Jembatan Penggaron, Jalan Tol Semarang-Solo, Seksi I Paket II. Jembatan Penggaron merupakan tipe jembatan *Prestressed* *Concrete Girder* dengan panjang 421,5m dengan total jumlah pier sebanyak 9 buah. Sistem pondasi yang digunakan berupa pondasi *bored pile* dengan diameter 1,2m dengan kedalaman pembenaman bervariasi dari 14 – 30m di bawah *pile cap*.

1.4.2 Studi Literatur

Penelitian ini diawali dengan pengumpulan teori-teori dan pendapat para ahli pada penelitian terdahulu yang digunakan sebagai landasan dalam penelitian ini, terutama dalam proses analisis data. Teori-teori atau pendapat-pendapat para ahli tersebut didapatkan dari sejumlah buku, artikel internet serta sumber-sumber lain yang dapat mendukung penelitian ini.

1.4.3 Metode Analisis

Melakukan *back analysis* berdasarkan hasil inklinometer dan data tanah yang didapatkan dari hasil boring untuk memodelkan permasalahan yang terdapat di lapangan.

1.5 Sistematika Penulisan

Dalam penulisan tesis ini, terdapat lima bab utama dengan beberapa sub bab pada masing-masing bab-nya, yang secara garis besar dipaparkan sebagai berikut :

BAB 1 : PENDAHULUAN

Dalam bab ini diuraikan secara menyeluruh garis besar isi tesis ini, yaitu meliputi latar belakang masalah, maksud dan tujuan penelitian, pembatasan masalah, metoda penelitian, dan sistematika penulisan.

BAB 2 : TINJAUAN PUSTAKA

Dalam bab ini dipaparkan teori-teori dan konsep-konsep yang akan digunakan dalam proses analisis data pada tesis ini. Teori-teori yang akan digunakan di dalam penelitian ini yaitu teori mengenai longsoran, pondasi tiang bor, inklinometer, serta peran angkur sebagai upaya perkuatan pondasi.

BAB 3 : METODOLOGI PENELITIAN

Dalam bab ini dijabarkan tahapan-tahapan perhitungan dengan metode elemen hingga yang dibantu program PLAXIS 2D dan PLAXIS 3D TUNNEL.

BAB 4 : ANALISIS DATA HASIL PENELITIAN

Pada bab ini diuraikan pengumpulan, penyajian serta pengolahan data yang didapatkan dari tahapan penelitian yang telah dilakukan sebelumnya sehingga diperoleh suatu data akhir yang berguna dalam penyusunan kesimpulan. BAB 5 : KESIMPULAN DAN SARAN

Pada bab ini dipaparkan kesimpulan dan saran yang diperoleh atas proses analisis data yang telah dijabarkan pada bab sebelumnya.