BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

1.	Interaksi tanah dengan geotextile non woven menghasilkan nilai c = 0.29
	kg/cm 2 dan $\square = 20^{\circ}$, untuk interaksi tanah dengan geotextile woven
	menghasilkan nilai c = $0.19 \text{ kg/cm}^2 \text{dan } \square = 19.5^\circ$. Sedangkan untuk interaksi
	tanah asli saja menghasilkan nilai c = 0.36 kg/cm 2 dan \square =16 $^\circ$.
2.	Interaksi tanah kompaksi dengan geotextile non woven menghasilkan nilai c =
	0.31 kg/cm² dan □ =25.5°, untuk interaksi tanah kompaksi dengan geotextile
	woven menghasilkan nilai c = $0.22 \text{ kg/cm}^2 \text{ dan } \square = 24.5^{\circ}$. Sedangkan untuk
	interaksi tanah kompaksi saja menghasilkan nilai c = 0.49 kg/cm 2 dan \square =
	24°.
3.	Untuk tanah lempung, nilai rasio α tanah dengan tanah lebih besar dibanding
	dengan tanah – geotextile, hal ini menunjukkan bahwa nilai kohesi (c) tanah
	lempung sangat tergantung dari sifat lekatan antara partikel tanah itu sendiri.
	Dengan adanya geotextile, maka kelekatan antara tanah itu sendiri berkurang.

5.2. Saran

- 1. Pemasangan *Geotextile* harus diperhatikan agar tidak tersangkut diantara shearbox agar data yang didapat lebih akurat.
- 2. Penggunaan *shear box* dengan ukuran yang lebih besar dapat meningkatkan keakuratan hasil percobaan.

Dilakukannya percobaan menggunakan jenis tanah yang lain, misal : tanah pasiran.

DAFTAR PUSTAKA

- Das, B.M, 1993, Mekanika Tanah Jilid I, Erlangga, Ciracas.
- Das, B.M, 1994, Mekanika Tanah Jilid II, Erlangga, Ciracas.
- Fathurrozi., (2014), Analisis Parameter Kekuatan Geser Antarmuka Pasir Palangkaraya Geotekstil, Jurnal ITENKA, Tahun XIV..
- Kintaro, Naomi, (2014) Laporan Praktikum Penyelidikan Tanah. Laporan Praktikum Progam Studi Teknik Sipil Fakultas Teknik Universitas Katolik Parahyangan, Bandung.
- Koerner, Robert M., Ph.D., P.E., (1999), Designing with Geosynthetics, Fourth Edition, New Jersey.
- Prasetyo, Andy, (2013), Pengujian Berat Jenis, Laporan pengujian Mekanika

 Tanah Progam Studi Teknik Sipil Fakultas Teknik Universitas Negi

 Malang.
- Rao, Kameswara. 2011. Foundation Design: Theory and Practice. Asia: John Wiley & Sons. Pte. Ltd.
- Rifa'i, A., (2009), Perilaku Interaksi Tanah-Geotekstil terhadap Parameter Kuat Geser, Dinamika TEKNIK SIPIL, Volume 9, Yogyakarta.
- Shukla, Sanjay Kumar; Jian Huan Yin, (2006), Fundamentals of Geosynthetic Engineering. London: Taylor & Francis Goup.