PEMBUATAN KARBON AKTIF DARI KULIT JERUK UNTUK ELEKTRODA SUPERKAPASITOR

TESIS

Diajukan sebagai Salah Satu Syarat untuk Mengikuti Sidang Akhir

Oleh:

Hans Kristianto NPM: 2011871001

Pembimbing:

Prof. Dr. Ir. Ign Suharto, A.P.U. Dr. Arenst Andreas Arie, S.T., S.Si., M.Sc.

Penguji:

Ratna Frida Susanti, Ph.D. Hary Devianto, Ph.D.

PROGRAM MAGISTER TEKNIK KIMIA PROGRAM PASCASARJANA UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG 2013

HALAMAN PENGESAHAN

PEMBUATAN KARBON AKTIF DARI KULIT JERUK UNTUK ELEKTRODA SUPERKAPASITOR

Oleh:

Hans Kristianto NPM: 2011871001

Disetujui untuk Diajukan Sidang dalam : Sidang Ujian Hari/Tanggal: Senin, 22 Juli 2013

Pembimbing 1:

Prof. Dr. Ir. Ign Suharto, A.P.U. Pembimbing 2:

Dr. Arenst Andreas Arie, S.T., S.Si., M.Sc.

PROGRAM MAGISTER TEKNIK KIMIA PROGRAM PASCASARJANA UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG 2013

LEMBAR PENGUJI

SIDANG UJIAN TESIS

Hari/ Tanggal: Senin, 22 Juli 2013

Pembimbing 1:

Prof. Dr. Ir. Ign Suharto, A.P.U.

Pembimbing 2:

Dr. Arenst Andreas Arie, S.T., S.Si., M.Sc.

Penguji:

Ratna Frida Susanti, Ph.D.

Penguji:

Hary Devianto, Ph.D.

Magister Teknik Kimia

Program Pascasarjana

Universitas Katholik Parahyangan Bandung

SURAT PERNYATAAN

Saya yang bertanda tangan dibawah ini:

Nama: Hans Kristianto

NPM: 2011871001

dengan ini menyatakan bahwa laporan penelitian dengan judul:

Pembuatan Karbon Aktif dari Kulit Jeruk untuk Elektroda Superkapasitor

adalah hasil pekerjaan saya dan seluruh ide, pendapat atau materi dari sumber lain

telah dikutip dengan cara penulisan referensi yang sesuai.

Pernyataan ini saya buat dengan sebenar-benarnya dan jika pernyataan ini tidak

sesuai dengan kenyataan, saya bersedia menanggung sanksi sesuai peraturan yang

berlaku.

Bandung, Juli 2013

Hans Kristianto

iv

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa atas segala berkat dan rahmat yang diberikan kepada penulis hingga selama penelitian dan pembuatan laporan, penulis dapat menyelesaikannya dengan baik. Laporan dengan judul "Pembuatan Karbon Aktif dari Kulit Jeruk untuk Elektroda Superkapasitor" merupakan salah satu syarat kelulusan pendidikan S-2 di MTK Unpar.

Proses penelitian dan pembuatan laporan dapat diselesaikan semuanya berkat bantuan banyak pihak, baik dalam dukungan moriil maupun materiil. Maka pada kesempatan ini penulis ingin mengucapkan terima kasih kepada :

- 1. Prof. Dr. Ir. Ign Suharto, A.P.U dan Dr. Arenst Andreas, S.T., S.Si., M.Sc. yang berkenan membimbing dan memberi berbagai masukan dalam penulisan laporan ini.
- 2. Ratna Frida Susanti, Ph.D. dan Hary Devianto, Ph.D. yang berkenan menjadi penguji dan pembahas,
- 3. Kedua orang tua dan keluarga yang telah memberikan doa, semangat, dukungan dan segala bantuan dalam penyelesaian laporan ini,
- 4. Pak Yana, Bu Jo, Bu Lusi, Bu Henni, dan Bu Lisbet yang membantunya proses penelitian ini dalam penyediaan alat dan bahan serta berbagai informasi lain yang bermanfaat,
- Dr.Lee JoongKee, Kim Sonsaengnim yang banyak membantu proses analisa di KIST
- 6. Rekan-rekan Lab *Advance Energy Material Processing*, terutama Ko Martin, yang banyak membantu selama penulis melakukan analisa di KIST
- 7. Rekan-rekan mahasiswa Indonesia di KIST terutama Ko Martin, Ko Philip, Mas Taufik, Ci Vania, Ci Livia, dan Mbak Endah
- 8. Rekan-rekan S1 TK Unpar di Lab RRK yang banyak membantu selama proses run pendahuluan,

vi

9. Semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu

dalam pelaksanaan dan penyusunan laporan ini.

Penulis menyadari bahwa laporan yang telah disusun masih memiliki banyak

kekurangan, maka penulis mengharapkan kritik dan saran yang membangun demi

kemajuan studi penulis. Semoga penelitian yang telah dilakukan, dapat menjadi dasar

untuk penelitian selanjutnya. AMDG.

Bandung, Juni 2013

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
LEMBAR PENGUJI	iii
SURAT PERNYATAAN	iv
KATA PENGANTAR	v
DAFTAR ISI	vii
DAFTAR GAMBAR	X
DAFTAR TABEL	xiii
INTISARI	xiv
ABSTRACT	XV
BAB 1 PENDAHULUAN	1
1.1. Latar belakang	1
1.1.1. Permasalahan	1
1.1.2. Komoditi yang diteliti	3
1.1.3. Teknologi pembuatan karbon aktif	3
1.2. Tema sentral masalah	3
1.3. Identifikasi masalah	4
1.4. Premis	4
1.5. Tujuan Penelitian	4
1.6. Hipotesis	5
1.7. Manfaat penelitian	5
BAB 2 TINJAUAN PUSTAKA	6
2.1. Karbon aktif	6
2.1.1. Struktur karbon aktif	6
2.1.2. Bahan baku karbon aktif	9
2.1.3. Tahapan pembuatan karbon aktif	11
2.1.3.1. Preparasi	12

viii	

2.1.3.2. Perlakuan panas	12
2.1.3.3. Aktivasi karbon aktif	12
2.1.4. Gugus fungsional permukaan	16
2.2. Superkapasitor	18
2.2.1. Electric Double Layer Capacitor (EDLC)	23
2.2.2. Pseudocapacitors	29
2.2.3. Hybrid capacitors	31
2.3. EDLC dari karbon aktif	33
2.4. Metode penentuan karakteristik karbon aktif sebagai elektroda	37
2.4.1. Scanning Electron Microscopy (SEM)	37
2.4.2. Metode BET (Brunauer-Emmet-Teller)	38
2.4.3. Metode DFT (Density Functional Theory)	38
2.4.4. Titrasi Boehm	38
2.4.5. Fourier transform infrared spectroscopy (FTIR)	39
2.4.6. X-ray photoelectron spectroscopy (XPS)	39
2.4.7. Cyclic voltammetry (CV)	40
2.4.8. Galvanostatic charge-discharge (GCD)	42
2.4.7. Electrochemical impedance spectroscopy (EIS)	42
2.5. Modifikasi permukaan	45
BAB 3 BAHAN DAN METODE PENELITIAN	50
3.1. Rancangan penelitian	50
3.2. Alat dan bahan	51
3.3. Prosedur percobaan	52
3.3.1. Perlakuan awal bahan baku	52
3.3.2. Pembuatan karbon aktif	53
3.3.2.1. Cara kerja start up furnace	53
3.3.2.2. Cara kerja shutdown furnace	53
3.3.2.3. Aktivasi kimia dan karbonisasi	54

3.3.2.4. Modifikasi permukaan karbon aktif	56
3.3.3. Metode analisa	57
3.3.3.1. Penentuan karakteristik karbon aktif	57
3.3.3.2. Pembuatan sel elektroda dan analisa	58
karakteristik elektrokimia	
3.4. Lokasi dan pembagian waktu kerja	61
BAB 4 PEMBAHASAN	63
4.1. Percobaan pendahuluan	63
4.2. Percobaan utama	71
4.3. Studi ini dan studi lebih lanjut	88
BAB 5 KESIMPULAN DAN SARAN	91
5.1. Kesimpulan	91
5.2. Saran	92
DAFTAR PUSTAKA	93
LAMPIRAN A: MSDS DAN RISK ASSESSMENT	102
A.1. Material safety data sheets (MSDS)	102
A.2. Risk assessment	103
LAMPIRAN B : GRAFIK	105
B.1. Grafik analisa XPS	105
B.2. Grafik analisa cyclic voltammetry (CV)	107
B.3. Grafik analisa siklik (Galvanostatic charge discharge)	109
B.4. Grafik analisa impedansi sel	111
LAMPIRAN C : CONTOH PERHITUNGAN	113
C.1. Perhitungan perolehan karbon aktif	113
C.2. Perhitungan kapasitansi sel dari analisa cyclic voltammetry (CV)	113
C.3. Konversi kapasitas sel ke kapasitansi sel	114
C.4. Efisiensi coulomb sel	114
C.5. Densitas energi dan daya sel	115

DAFTAR GAMBAR

Gambar 2.1. Ilustrasi yang menggambarkan perbedaan	7
graphitizable dan non-graphitizable carbon	
Gambar 2.2. Struktur heksagonal graphite	7
Gambar 2.3. Ilustrasi struktur karbon aktif	8
Gambar 2.4. Ilustrasi pori-pori dalam karbon aktif	8
Gambar 2.5. Struktur sellulosa	10
Gambar 2.6. Struktur hemisellulosa yang umum ditemukan pada kayu lunak	11
Gambar 2.7. Monomer pembentuk lignin	11
Gambar 2.8. Skema sederhana aktivasi kimia	15
Gambar 2.9. Skema sederhana aktivasi fisika	16
Gambar 2.10. Struktur gugus fungsi oksigen pada permukaan karbon	17
Gambar 2.11. Ilustrasi kapasitor dalam rangkaian listrik	19
dan bagian dalam kapasitor	
Gambar 2.12. Ragone plot untuk alat penyimpan energi	21
Gambar 2.13. Skema pembagian superkapasitor	22
Gambar 2.14. Sistem EDLC pada keadaan terisi	24
Gambar 2.15. Anion dan kation RTIL	27
Gambar 2.16. Ilustrasi EDL	29
Gambar 2.17. Ilustrasi proses doping dan dedoping	30
Gambar 2.18. Skema profil voltase LIC dan EDLC (kiri);	33
Ragone plot berbagai alat penyimpan energi (kanan)	
Gambar 2.19. Pengisian dan pengosongan LIC	33
Gambar 2.20. Karakteristik voltammetry yang umum	42
pada kapasitor elektrokimia	
Gambar 2.21. Sirkuit ekuivalen yang digambarkan pada grafik Nyquist	43
Gambar 2.22. Sirkuit ekuivalen Randles (a), Kurva Nyquist sirkuit Randles (b)	44

Gambar 2.23. Sel uji tiga elektroda	45
Gambar 3.1. Cara kerja perlakuan awal bahan baku	52
Gambar 3.2. Cara kerja start up furnace	53
Gambar 3.3. Cara kerja shut down furnace	53
Gambar 3.4. Skema furnace elektrik	54
Gambar 3.5. Cara kerja aktivasi kimia dan karbonisasi	55
Gambar 3.6. Cara kerja modifikasi permukaan karbon aktif	57
Gambar 3.7. Cara kerja pembuatan sel elektroda	59
Gambar 3.8. Cara kerja penyusunan sel uji	60
Gambar 3.9. Ilustrasi penyusunan sel uji	61
Gambar 4.1. Perolehan karbon aktif terhadap rasio biomassa impregnant	64
Gambar 4.2. Hasil analisa SEM karbon aktif dengan impregnant ZnCl ₂	64
dengan rasio biomassa : ZnCl ₂ a. 4:1, b. 2:1, c. 1:1, d. 1:2	
Gambar 4.3. Hasil analisa SEM karbon aktif dengan impregnant KOH	65
dengan rasio biomassa: KOH a. 4:1, b. 2:1, c. 1:1, d. 1:2, e. 1:4	
Gambar 4.4. Luas permukaan karbon aktif terhadap rasio <i>impregnant</i> ZnCl ₂	66
Gambar 4.5. Luas permukaan karbon aktif terhadap rasio impregnant KOH	68
Gambar 4.6. Luas permukaan BET pada berbagai rasio dan temperature	70
Gambar 4.7. Kurva isoterm adsorbsi-desorbsi nitrogen	72
Gambar 4.8. Distribusi pori-pori BJH	74
Gambar 4.9. Morfologi karbon aktif: a. sebelum modifikasi,	75
b. H ₂ O ₂ 1:1, c. HNO ₃ 1:1, d. H ₂ SO ₄ 1:1	
Gambar 4.10. Spektra XPS C1s sebelum dan setelah modifikasi	76
Gambar 4.11. Spektra XPS N1s sebelum dan setelah modifikasi asam nitrat	78
Gambar 4.12. Grafik CV elektroda karbon aktif pada berbagai scan rate	80
Gambar 4.13. Kurva charge-discharge pada awal siklus	82
Gambar 4.14. Kurva charge-discharge pada siklus ke-30	83
Gambar 4.15. Kapasitansi sel sepanjang siklus	84
Gambar 4.16. Efisiensi coulomb sel sepanjang siklus	85

Gambar 4.17. Impedansi sel sepanjang siklus	87
Gambar 4.18. Model fitting impedansi	87
Gambar B.1. Spektra XPS sampel tanpa perlakuan	105
Gambar B.2. Spektra XPS sampel modifikasi asam nitrat	105
Gambar B.3. Spektra XPS sampel modifikasi asam sulfat	106
Gambar B.4. Spektra XPS sampel modifikasi hidrogen peroksida	106
Gambar B.5. Voltammogram sampel tanpa perlakuan	107
Gambar B.6. Voltammogram sampel modifikasi asam nitrat	107
Gambar B.7. Voltammogram sampel modifikasi asam sulfat	108
Gambar B.8. Voltammogram sampel modifikasi hidrogen peroksida	108
Gambar B.9. Siklus charge-discharge sampel tanpa perlakuan	109
Gambar B.10. Siklus charge-discharge sampel modifikasi asam nitrat	109
Gambar B.11. Siklus charge-discharge sampel modifikasi asam sulfat	110
Gambar B.12. Siklus charge-discharge sampel modifikasi hidrogen peroksida	110
Gambar B.13. Impedansi sel karbon aktif tanpa perlakuan	111
Gambar B.14. Impedansi sel karbon aktif modifikasi asam nitrat	111
Gambar B.15. Impedansi sel karbon aktif modifikasi asam sulfat	112
Gambar B.16. Impedansi sel karbon aktif modifikasi hidrogen peroksida	112

DAFTAR TABEL

Tabel 2.1. Perbandingan karakteristik superkapasitor dan baterei	22
Tabel 2.2. Elektrolit yang digunakan dalam EDLC	26
Tabel 2.3. Gelombang spektrum infra merah pada permukaan karbon	40
Tabel 2.4. Spektrum XPS untuk C_{1s} , O_{1s} , dan N_{1s}	41
Tabel 3.1. Variasi jenis impregnant	56
Tabel 3.2. Variasi rasio dan temperatur	56
Tabel 3.3. Variasi oksidator modifikasi permukaan	56
Tabel 3.4. Pembagian waktu kerja semester pertama	62
Tabel 3.5. Pembagian waktu kerja semester kedua	62
Tabel 4.1. Karakteristik karbon aktif pada berbagai rasio ZnCl ₂	67
Tabel 4.2. Karakteristik karbon aktif pada berbagai rasio KOH	68
Tabel 4.3. Pengaruh temperatur dan rasio impregnant	69
terhadap parameter karbon aktif: luas permukaan, volume,	
dan diameter pori-pori	
Tabel 4.4. Pengaruh modifikasi permukaan terhadap	72
luas permukaan karbon aktif	
Tabel 4.5. Komposisi gugus fungsi spektra C1s	77
Tabel 4.6. Komposisi gugus fungsi spektra N1s	77
Tabel 4.7. Persentase komposisi atomik karbon aktif	78
Tabel 4.8. Kapasitansi sel pada analisa CV	81
Tabel 4.9. Nilai impedansi sel sepanjang siklus	86
Tabel 4.10. Perbandingan kapasitansi katoda untuk LIC	90

PEMBUATAN KARBON AKTIF DARI KULIT JERUK UNTUK ELEKTRODA SUPERKAPASITOR

Hans Kristianto (NPM: 2011871001)

Pembimbing:
Prof. Dr. Ir. Ign. Suharto, A.P.U.
Dr. Arenst Andreas Arie, S.T., S.Si., M.Sc.

Magister Teknik Kimia Bandung Juli 2013

INTISARI

Lithium ion capacitor (LIC) merupakan superkapasitor hybrid yang memiliki densitas energi dan daya yang lebih besar daripada superkapasitor dan baterei lithium. Akan tetapi kapasitas LIC dibatasi oleh performansi karbon aktif sebagai katodanya. Penelitian ini akan mengkaji karbon aktif yang berasal dari limbah kulit jeruk sebagai katoda LIC yang memiliki karakteristik seperti elektroda EDLC. Karbon aktif yang diperoleh lebih lanjut dimodifikasi untuk meningkatkan performansi elektrokimianya. Pembuatan karbon aktif menggunakan metode aktivasi kimia dengan variasi jenis (ZnCl₂ dan KOH), dan rasio *impregnant* serta temperatur karbonisasi. Karbon aktif dengan *impregnant* ZnCl₂ rasio 1:2 temperatur 500°C dipilih untuk dimodifikasi, karena luas permukaan yang besar (1200 m²/g) dan struktur pori yang cenderung *micropore*. Modifikasi dilakukan dengan menggunakan oksidasi basah (HNO₃ 65%, H₂SO₄ 98%, dan H₂O₂ 30%) dengan rasio 1:1 (b/b). Karakteristik dan morfologi sampel diketahui dengan metode BET (luas area dan pori-pori), XPS (gugus fungsional), dan SEM. Karakteristik elektrokimia dipelajari dengan analisa cyclic voltammetry (CV), Galvanostatik dan Impedansi. Sel uji berupa half cell dengan elektroda referens berupa logam Li dengan elektrolit 1 M LiPF₆ (EC:EMC:DMC = 1:1:1). Modifikasi yang dilakukan memberikan peningkatan gugus oksigen dalam karbon aktif. Hal ini menyebabkan peningkatan kapasitansi sel (sampai 2,1x pada tes galvanostatik), akan tetapi tidak memberikan kestabilan yang diharapkan. Sampel karbon aktif tanpa perlakuan memberikan kapasitansi sebesar 51,7 F/g pada scan rate 1 mV/s dengan rentang voltase 2,5-4 V.

Kata kunci: kulit jeruk, karbon aktif, katoda, Lithium ion capacitor

PREPARATION OF ACTIVATED CARBON FROM INDONESIAN LOCAL ORANGE PEEL WASTE FOR SUPERCAPACITOR'S ELECTRODE

Hans Kristianto (NPM: 2011871001)

Supervisor:

Prof. Dr. Ir. Ign. Suharto, A.P.U. Dr. Arenst Andreas Arie, S.T., S.Si., M.Sc.

Magister of Chemical Engineering
Bandung
July 2013

ABSTRACT

Lithium ion capacitor (LIC) is a novel hybrid capacitor technology that gives better performance than conventional supercapacitor and lithium ion battery. However, LIC overall performance is limited by activated carbon's capacity as its cathode. This research is focused on making of activated carbon from local orange peel waste for LIC cathode. Activated carbon as LIC cathode has the same performance as EDLC electrode. The obtained activated carbon was modified to get better electrochemical performances. Activated carbon was made using chemical activation method. Impregnant, impregnation ratio, and temperature were varied. Carbonization was done by using a electric cylindrical furnace with holding time 1 hour at highest temperature. Activated carbon obtained from ZnCl₂ impregnation at 1:2 ratio 500°C, had large surface area (1200 m²/g) and near microporous characteristics, which was ideal for modification purposes. Modification was done using wet oxidation method (HNO₃ 65%, H₂SO₄ 98%, and H₂O₂ 30%), with ratio 1:1 (w/w). Physical characteristic and morphology were studied using BET surface area test, XPS for functional groups and SEM. Electrochemical properties were studied by using half cell test pouch with Li metal as reference electrode in 1M LiPF₆ (EC:EMC:DMC = 1:1:1) electrolyte. Modification had successfully increased oxygen atoms in activated carbon samples. Modified cells gave higher capacitance (up to 2,1x in galvanostatic test) than unmodifed one, but didn't have a stable electrochemical performance. Nonmodified cell gave a stable performance with 51,7 F/g at scan rate 1 mV/s and voltage window 2,5-4V.

Keywords: orange peel, activated carbon, cathode, Lithium ion capacitor

BAB 1

PENDAHULUAN

1.1. Latar belakang

1.1.1. Permasalahan

Energi merupakan salah satu kebutuhan utama dalam kehidupan manusia. Peningkatan kebutuhan akan energi mendorong pemakaian energi fossil dalam jumlah yang besar. Hal ini mendorong berkurangnya sumber energi yang tidak terbaharukan tersebut secara drastis, dan pencemaran lingkungan yang terus meningkat. Masalah ini memunculkan kesadaran akan penggunaan teknologi yang lebih efisien, dan penggunaan sumber daya alam terbaharukan.

Jika dibandingkan dengan energi dari bahan bakar fossil, salah satu bentuk energi yang memiliki efisiensi cukup tinggi adalah energi listrik. Hal inilah yang mendorong pengembangan berbagai kendaraan dengan menggunakan motor listrik yang dinilai lebih efisien dan ramah lingkungan. Seiring dengan itu, tentu diperlukan mekanisme penyimpanan energi yang seefisien mungkin. Teknologi konvensional untuk penyimpanan energi yang telah umum digunakan berupa kapasitor elektrostatik dan baterei. Akan tetapi baterei dan kapasitor konvensional memiliki berbagai kekurangan. Kapasitor konvensional memiliki kapasitansi yang relatif kecil, sehingga aplikasinya menjadi terbatas. Sementara baterei memiliki siklus pakai yang singkat, serta membutuhkan waktu pengisian yang lama (Ariyanayagam, 2012). Teknologi ini berpotensi untuk menggantikan kapasitor konvensional dan digunakan sebagai *hybrid* untuk meningkatkan performansi baterei bahkan pada kendaraan bermotor (Pollet, Staffell et al., 2012).

Superkapasitor, dikenal juga dengan ultrakapasitor atau kapasitor elektrokimia, merupakan teknologi penyimpanan listrik yang memiliki luas elektroda yang sangat besar, serta resistensi yang relatif kecil sehingga mampu memiliki kapasitansi yang lebih besar. Superkapasitor telah dikembangkan sejak tahun 1957 oleh *General*

Electric yang menggunakan karbon berpori untuk membuat kapasitor elektrolitik (Namisnyk, 2003). Saat ini, berbagai perusahaan di dunia telah memproduksi superkapasitor untuk digunakan secara komersil. Beberapa di antaranya seperti NEC dan Panasonic (Jepang), Epcos, ELNA, AVX, dan Cooper (Amerika),Cap-XX (Australia),Ness Capacitor Co.(Korea), Tavrima (Kanada) serta ESMA (Russia) (Namisnyk, 2003).

Secara umum, superkapasitor dapat digolongkan menjadi tiga, yaitu electric double layer capacitor (EDLC), pseudocapacitors, dan superkapasitor hybrid. EDLC dan pseudocapacitors digolongkan berdasar pada metode penyimpanan energinya (Béguin and Frackowiak, 2010). EDLC menyimpan energi secara non-Faradaic, yaitu hanya berdasarkan gaya elektrostatik saja, sementara pseudocapacitors menyimpan energi secara Faradaic, di mana terjadi reaksi redoks selama pengisian dan pengosongan kapasitor. Sementara superkapasitor hybrid menggabungkan prinsip EDLC dan pseudocapacitors. Pada penelitian ini difokuskan pada superkapasitor hybrid jenis Lithium Ion Capacitor (LIC).

Teknologi LIC menggabungkan keunggulan antara EDLC dan baterei lithium, sehingga dapat memiliki densitas daya yang lebih besar daripada baterei, dan densitas energi lebih besar daripada EDLC biasa (Kim, Kim et al., 2012). Hal ini dimungkinkan oleh mekanisme penyimpanan energi yang memanfaatkan penyimpanan reversibel non-Faradaic pada katoda, dan penyimpanan Faradaic pada anoda. Secara komersil, LIC telah diproduksi dan dipasarkan oleh JM Energy, Jepang (Lee, Yabuuchi et al., 2010).

LIC tersusun atas katoda, anoda, elektrolit, pelarut, membrane, dan pengumpul arus. Setiap bagian penyusunnya memberikan pengaruh terhadap kapasitansi. Katoda yang umum digunakan berupa karbon aktif, sementara anoda berupa grafit yang mengandung ion Li (Li *doped graphite*). Akan tetapi kapasitas katoda karbon aktif hanya sekitar satu per lima dari grafit, sehingga membatasi densitas energi sel *overall* (Choi, Lee et al., 2012). Karbon aktif telah umum digunakan sebagai elektroda EDLC, tetapi selama ini masih banyak dibuat dari batu

bara yang tidak terbaharukan. Oleh karena itu, dibutuhkan bahan baku alternatif yang terbaharukan untuk membuat karbon aktif. Di dalam penelitian ini difokuskan terhadap pembuatan karbon aktif yang berasal dari bahan baku terbaharukan dengan aplikasi katoda pada LIC. Modifikasi permukaan yang dilakukan bertujuan untuk meningkatkan kapasitansi karbon aktif sebagai katoda LIC, sehingga dapat meningkatkan kapasitas *overall* sel.

1.1.2. Komoditi yang diteliti

Jeruk merupakan komoditas perkebunan terbesar kedua di Indonesia, dengan total produksi mencapai 1,818 juta ton pada tahun 2011. Jeruk lokal Indonesia, atau dikenal juga sebagai *Citrus nobilis var. microcarpa*, memiliki penampakan buah bulat dengan warna kulit hijau kekuningan, dan biasa dimanfaatkan untuk diambil sari buahnya. Produksi jeruk di Indonesia yang cukup besar, dengan ketersediaan buah sepanjang tahun, memberikan jumlah limbah kulit yang cukup banyak. Limbah kulit jeruk merupakan salah satu sumber biomassa yang dapat digunakan untuk memproduksi karbon aktif. Pemanfaatan limbah kulit jeruk untuk dibuat karbon aktif yang digunakan sebagai elektroda superkapasitor, memberikan nilai tambah yang besar, serta memberikan alternatif pengolahan limbah.

1.1.3. Teknologi pembuatan karbon aktif

Teknologi pembuatan karbon aktif yang digunakan dalam penelitian ini adalah aktivasi kimia dengan *impregnant* ZnCl₂ dan KOH, dengan karbonisasi yang dilakukan dalam silinder *furnace* dalam atmosfer nitrogen. Teknik modifikasi permukaan karbon aktif dengan teknik basah, menggunakan oksidator seperti asam nitrat, asam sulfat, dan hidrogen peroksida.

1.2. Tema sentral masalah

Belum adanya pembuatan karbon aktif untuk katoda LIC menggunakan bahan baku limbah kulit jeruk yang tercermin dengan belum banyaknya publikasi ilmiah terkait masalah ini.

1.3. Identifikasi masalah

- 1.3.1. Bagaimanakah karakteristik karbon aktif yang dibuat dari kulit jeruk saat digunakan sebagai katoda LIC?
- 1.3.2. Faktor-faktor apa sajakah yang berpengaruh dalam pembuatan karbon aktif dari kulit jeruk terhadap performansinya sebagai katoda LIC?
- 1.3.3. Modifikasi permukaan apakah yang tepat untuk digunakan pada karbon aktif dari kulit jeruk, untuk meningkatkan performansinya sebagai katoda LIC?

1.4. Premis

- 1.4.1. Rasio biomassa dan *impregnant* berkisar pada 4:1 sampai 1:4 (Hu and Srinivasan, 2001; Yorgun, Vural et al., 2009; Liou, 2010).
- 1.4.2. Temperatur karbonisasi dengan aktivasi kimia pada rentang 400-600°C, dengan waktu karbonisasi sekitar 1 jam (Lua and Yang, 2005; Ucar, Erdem et al., 2009; Liou, 2010; Saka, 2012) dengan temperatur optimum untuk ZnCl₂ pada 500°C (Ahmadpour and Do, 1997; Olivares-Marin, Fernandez-Gonzalez et al., 2006; Ucar, Erdem et al., 2009; Liou, 2010).
- 1.4.3. Modifikasi permukaan karbon aktif dengan metode basah menggunakan HNO₃ 65%, H₂SO₄ 98%, atau H₂O₂ 30% (Liu, Hu et al., 2008; Ismanto, Wang et al., 2010).

1.5. Tujuan penelitian

- 1.5.1. Mempelajari karakteristik karbon aktif yang dibuat dari kulit jeruk saat digunakan sebagai katoda LIC.
- 1.5.2. Menentukan faktor-faktor yang berpengaruh dalam pembuatan karbon aktif dari kulit jeruk terhadap performansinya sebagai katoda LIC.
- 1.5.3. Menentukan modifikasi permukaan yang tepat untuk digunakan pada karbon aktif dari kulit jeruk, untuk meningkatkan performansinya sebagai katoda LIC.

1.6. Hipotesis

Rasio biomassa dan *impregnant*, jenis *impregnant* (KOH dan ZnCl₂), serta temperaturakan mempengaruhi perolehan, dan karakteristik karbon aktif. Modifikasi permukaan dengan oksidasi basah dapat meningkatkan kapasitansi sebagai katoda LIC.

1.7. Manfaat penelitian

Penelitian yang dilakukan memberikan manfaat kepada bidang keilmuwan, pemerintah, serta masyarakat luas. Bagi ilmuwan, penelitian ini memberikan kajian awal, serta memperluas kemungkinan biomassa yang digunakan dalam pembuatan karbon aktif, yaitu kulit jeruk, dengan aplikasi sebagai katoda LIC. Bagi pemerintah, penelitian diharapkan sebagai awal dari teknologi alternatif penyimpanan energi yang menggunakan bahan baku terbaharukan dengan performansi yang baik. Bagi dunia industri, penelitian dapat memberikan peluang usaha baru, serta solusi alternatif pengolahan limbah padat kulit jeruk yang memberikan nilai tambah terhadap limbah padat. Bagi masyarakat luas, penelitian ini diharapkan dapat memunculkan teknologi penyimpanan energi yang baik, tahan lama, dan dapat diaplikasikan pada berbagai peralatan sehari-hari.