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ABSTRACT

Reactive distillation is a novel alternative to the sequential operation in reactor and
distillation. It offers advantages in chemical reaction by shifting the chemical
equilibrium and separation by overcoming distillation boundaries. Economic
advantages also result from direct energy integration and reduction of equipment
costs. Reactive distillation is accepted as a preferred technology for producing
oxygenates, including ethyl ters-butyl ether (ETBE). The available reactive
distillation column in School of Chemical Engineering, Curtin University of
Technology was designed to produce ETBE. The mathematical models of the
column written in Pro/Il and SpeedUp Simulation Packages were significantly
modified to study other aspects of reactive distillation phenomena, which were not

previously considered by using steady state as well as dynamic simulations.

The ETBE reactive distillation column exhibits muitiplicity phenomena, which
influence the transient condition during start up and shut down operations. The input
multiplicity region that depends on the operating condition is significant during start -
up operation. The input muitiplicity could increase or decrease the overall process
performance depending on the chosen operating condition. Regarding output
multiplicity, different start up strategy results in different output conditions. This
result implies that the column could be sent to an inappropriate operating condition
due to the lack of understanding of the output multiplicity. Three scenarios for shut
down operation were considered in order to maintain high isobutylene conversion as

well as ETBE purity.

Since the multiplicity phenomena result from interaction between reaction and
separation effects, the existence of multiplicity depends on the number of separation
and reaction stages. Several columns were simulated to investigate the effects of
different number of either separation or reaction stages on the multiplicity
phenomena. It is speculated that input multiplicity always. occurs in any reactive
distillation column. This result implies that several reactive distillations may be

designed to satisfy the same process requirements. On the other hand, output
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multiplicity region could be magnified by increasing the number of reactive and
separaticr <tages. Besides, output multiplicity could be found for low internal rates

for high number of stages of the reactive distillation column.

The control schemes for the ETBE reactive distillation were also compared with
respect to their disturbance rejection capabilities. One-point control schemes may be
used to implicitly control the two main objectives of this reactive distillation column.
It was found that disturbance gains resulting from steady state analysis could be used
'to predict the dynamic changes of the system resulting from the same disturbances.
Among the control schemes studied, the LB scheme is the most suitable scheme to
reject load disturbances at one-point scheme for this reactive distillation. The LB
scheme also has excellent capability to change the steady state conditions through
changes in the set-point temperature. Although the LV control scheme also has
capability to reject load disturbances, the small step changes in the set-point
temperature could destabilise the system. This results from the limitation in the
reboiler sump, which is dry for step increases and floods for step decreases in the set-
point temperature. It is recommended to use bigger reboiler sump in this reactive
distillation. A detailed comparison for the LV and LB control schemes were
investigated by using proportional-integr_al (PI) controllers with various values for
the gains and reset times. It was found that the same values cannot satisfy both
positive and negative disturbances. This results from the high degree of non linearity

and bi-directionality of the system.

The Amberlyst-15 catalyst was first tested to determine the activity. The results show
that the catalyst particles still have adequate activity to proceed the synthesis of
ETBE. Experiments were then conducted under proposed batch operation to avoid
any polymerisation of isobutylene. However, continuous operations could not be run
due to pump failure. Other reasons for these difficulty and possible solutions to solve
this problem are explained in the thesis. Efforts were also made to connect the
controllers to a PC having SCAN 3000 through an interface converter, so that the rig

can be used for control studies in future projects.

Keywords: reactive distillation, simulation, multiplicity, start up, shut down, control
schemes, disturbance rejeciion.
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Introduction

The tighter environmental regulations have driven not only the increasing demand of
environmentally compatible products but also the development of chemical
engineering processes. For example, the Clean Air Act (CAA) which was amended
in November 1990 has established a permanent role for oxygenates in the US
gasoline. On the other hand, reactive distillation has also received more interests in
recent years. It combines chemical reaction and multistage distillation
simultaneously (De Garmo ef al, 1992) that offers a reduction in the capital
investment as well as the operating costs. Recently reactive distillation has been

selected by more than a hundred operators for various applications including more

than 60 ether units (Rock et al., 1997).

1.1 Background
1.1.1 Ethyl terz-butyl ether

Recently there are two main oxygenates, ethanol and tertiary ethers, which can be
blended into gasoline to improve its performance. In general, ethers such as methyl
tert-butyl ether (MTBE) and ethyl fert-butyl ether (ETBE) are preferred to ethanol
due to their blending properties, which are more like conventional gasoline
hydrocarbon constituents (Kyle and Datta, 1995). The demand for MTBE rose very
fast in this decade and may reach 540,000 bpd by the end of 2000 (Thomas, 1994).
Although MTBE is used widely at this time, ETBE will be a more important

oxygenate due to its better properties.

ETBE has some more advantages compared to MTBE. First, the properties of ETBE
are better than MTBE. It has a slightly higher octane rating and a lower volatility. As
a result, ETBE can raise combustion temperature and improve engine efficiency
(Thiel et al., 1997). Therefore, the level of carbon monoxide emission and unburned
hydrocarbon can be minimised. Besides, ETBE is less hydrophilic than MTBE S0
that ETBE can less permeate and pollute groundwater surface. ETBE is synthesised ‘
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from isobutylene and ethanol, which can be produced from biomass such as
agricultural wastes. In other words, ETBE i1s a semi renewable oxygenate. The
comparison properties between ETBE and MTBE were summarised by Sneesby et
al. (1997a) as shown in Table 1.1. It can be seen that ETBE slightly has a lower

oxygen content, therefore unburned fuel and carbon monoxide emissions are slightly
higher.

Table 1.1 The commarison properties between ETBE and MTBE*

No | Properties MTBE ETBE
1 Molecular weight 88 102
2 Oxygen content (wt%) 18.2 15.7
3 | Normal boiling point (°C) 55 _ 73 .
4 | Blending RVP (kPa) 55 27
5 | Octane ((RON+MON)/2) 110 111
6 | Energy content (MJ/kg) 353 363
7 Relative cost , - low moderate
8 Renewable source? no yes

* Source: Sneesby er al. (19972)

The oxygenates, especially MTBE are one of the fastest growing chemicals in the
nineties. Global MTBE capacity has reached about 30 millions of tons/year in 1995,
US consumed around 53% of them (Ancillotti and Fattore, 1998). However, ETBE
may become a major oxygenate in the future because it has some better advantages
compared to MTBE. Besides, the increasing contamination of water resources of
MTBE has become a major public concern in US. MTBE that dissolves in the water
resources Is resistance to microbial decomposition and is difficult to remove in water
treatments. Furthermore, the US Environmental Protection Agency (USEPA) has
classified MTBE as a potential human carcinogen (USGS, 1999). Besides, the price

of ETBE can be reduced by the improvements in design, operating and control
technologies.
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1.1.2 Reactive distillation

Research and development in chemical reaction engineering should be directed to
meet such demands as process and product safety, environmentally compatible
products, minmimisation of waste generation, minimisation 6f investment,
minimisation of energy consumption and operability and control (Lerou and Ng,
1996). The first three demands relate to tighter environmental regulation. Besides, a
new process should not only be safe and environmentally friendly but also
economically competitive compared to other processes. In this regard, globalisation
of the world economy will increase economic pressure. Thus, it is important to
develop a process that can minimise investment and energy consumption. Finally,
some processes that tend to be most severe and complex should be designed for

smooth start up and shut down, and for 6ptimal steady state operation through

process control.

Reactive distillation is an example of a unit operation that can meét these demands.
This unit combines chemical reaction and multistage distillation simultaneously (De
Garmo et al., 1992). Two main advantages result from reactive distillation. First,
there is a reduction in capital investment (De Garmo et al, 1992), due to the
integration of the reactor and the distillation column into one unit reactive distillation
column. It also leads to a reduced number of pumps, piping and instrumentation.
Next, the operating costs can be minimised (Bock et al., 1997), due to the ability of
reactive distillation to overcome thermodynamic and kinetic restrictions. This ability
results from utilising the high degree of int-ernal recycle present in a reactive
distillation system, which creates reaction conditions suitable for high conversion
(Sneesby et al., 1997a). In addition, it also offers direct energy integration between
the reaction system and separation system in the process (Ung and Doherty, 1995). It
results from exothermic heat of reaction that is used for evaporation of liquid-phase.

In addition, reactive distillation may also reduce downstream processing.

Although there are advantages in using reactive distillation column, some unusual
phenomena are still unclear due to the interaction of many variables. As a result, "the
interaction between variables in reactive distillation generates some unusual

responses to changes in operating condition” (Sneesby et al,, 1997a). This generates
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unusual control problems that may not be understood without detailed simulation
results. Furthermore, it may create unusual design in catalyst bed. It should provide
a surface for condensing the vapour and allowing hot vapour to rise through the
column and liquid to trickle down (Nathan, 1997). Besides, the catalyst has to be

located in the best suitable temperature for reaction.

In recent years, the application of reactive distillation 1s quite attractive for both
heterogeneously catalysed etherification such as MTBE and ETBE and
homogenously catalysed esterification or hydration (Thiel et al., 1997). Podrebarac et
al. (1997) reviewed some of reactions that could benefit from the application of
reactive distillation. Stichmair and Frey (1999) presented similar work by discussing
the possibility of reactive distillation through the comparison of conventional
processes and reactive distillation processes. The knowledge of reactive distillation
lines and potential reactive azeotrope were used for systematic deSIng of reactive
distillation-in the latter one. Another computational approach, Wthh was based on
the concept of “Static Analysis”, was developed as a new systematic, method for the

feasibility study of the reactive distillation (Geissler et al., 1998).

There are now few commercial applications, for examples, the Eastman Kodak
process for the production of methyl acetate and the Smith’s catalytic distillation of
MTBE (Lerou and Ng, 1996). CD tech is the leader in this technology with some 70
units which are operated around the world (Nathan, 1997). Besides, this research area
is still growing in international scale, for example, European Union has sponsored a
résearch consoﬁium project which costs around Ecudm (some £2.3m) (Nathan,
1997). This project is led by Nestle which includes BP, BASF Hoechst,
Snamprogetti and the Universities of Aston, Bath, Essen, Dortrnund Clausthal and
Helsinki. This consortium has announced the achievement that provides a predictive
tool (named SYNTHESISER), a process simulator (named DISIGNER), and an
integrated tool (named PREDICTOR) (Kenig et af., 1999). The SYNTHESISER is
used for a fast evaluation of whether reactive distillation is suitable for certain
chemical systems and then provides a basic design for further development of the
process. The DESIGNER 1is used for modelling, designing and understanding of the

complex behaviour of the reactive distillation column and then integrated into
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industrial process design. Furthermore, the PREDICTOR is used for synthesis and

design of reactive distillation processes using a special common user interface.

1.2 Research Objectives and Contributions

The principal objective of the research is to enrich the-study of reactive distiilation
control for ETBE synthesis. The research includes the dynamics of start up and shut
down operations to obtain more stable steady state operations. Further efforts focus
on the multiplicity phenomena and comparison of the control configurations. The
available model as discussed in Sneesby ef al. (19973, b), which are written in Pro/Ii
and SpeedUp were assessed and expanded further as the basis of reactive distillation

control studies. At the current time, there are very few published results on how this

can be done.

The secondary objective focuses on completing instrumentatibn oE' the pilot scale
reactive distillation unit, v&;hich is available in the School of Chemical Engineering.
Progeny CTX temperature controllers was comnnected to a PC having SCAN 3000
through ar interface converter. The reactive distillation unit is expécfed to be run for
collecting experimental data, which can be used to validate the simulation results. At

this time, there are no published experimental results.

1.3 Thesis Qutline

The thesis d.iscusses- the applic-ation of reactive distillation for ETBE synthesis. It is
divided into four main topics: the effects of the multiplicity phenomena during start
up and shut down operation (Chapter 3); the effects of number of stages in reactive
distitlation on multiplicity phenomena (Chapter 4); the comparison of one-point
scheme for controlling ETBE purity (Chapter 5); and the discussion of the
cha.racteristi'c;s of the reactive distillation unit (Chapter 6). Supplemental to this core

are the literature review (Chapter 2), the conclusions and recommendations (Chapter

7) and the list of cited literature (Chapter 8).
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Program listings for the simulation models (Chapters 3-5) have not been included in
the thesis in order .. conserve space. These are available from the School of

Chemical Engineering, Curtin University of Technology, on request.





