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Abstract.  Modeling commodity price process represented by a stochastic differential equation is essential for 

developing the risk managent tools, e.g., options, besides for forecasting future prices. However, gold has spesific 
features compared to other commodities such as agricultural and energy commodies, even compared to other metals. 

Gold is the most popular commodity used as an investment. Hence, gold is often used to hedge the risks against 

economic, political, social or currency-based crisis. We model the rolling gold spot prices traded in Indonesia market 
as commonly applied to model the commodity price, that is as the the sum of the deterministic and stochastic 

components. Our investigation shows that the gold price process does not exhibit seasonality but presents trend  

influenced by inflation. That feature is captured as the deterministic component model. To describe the stochastic 
component, we investigate performances of three models: Geometric Brownian Motion, mean-reversion diffusion and 

potential diffusion models. Performances of those three models are measured by comparing the distributional 

characteristics obtained from the original data and from those models to find the most suitable model for rolling gold 
prices. Then, based on the most suitable model, we forecast future spot rolling gold prices and apply some statistical 

tests to investigate performances of the model.  
 

Key words: Geometric Brownian motion, mean-reversion diffusion, potential diffusion model, rolling gold prices, 

Indonesia market.       

 

 

 

1 Introduction 
 

Gold has been used as an investment for a long time along with other precious metals such as copper, silver, tin, 

lead, alluminium, zinc, nickel, palladium and platinum. However, gold has become the most popular metals 

used as investment compared to other abovementioned metals. People invest in gold to hedge or protect against 

social, economic or political crises such as war, market declines, inflation or political uncertainty in the country 

of in the world. People also note that gold prices have an increasing trend over the last decade; so this is also 

another reason for investing in gold. Gold also used in industry for art and jewellery and in the past it was used 

as money where all other commodities’ prices were measured in gold price.  

 

In this paper, we model the rolling gold spot prices traded in Indonesia market by considering deterministic and 

stochastic components of the prices. Most researchers and practitioners in commodity markets have proposed 

and used this approach in modelling commodity prices (e.g. Pilipovic (1998), Huisman and Mahieu (2001), 

Lucia and Schwartz (2002) and Sorensen (2002)). The deterministic component includes the behaviour of trend 

and seasonality of the gold spot prices, while for the stochastic component we will consider three models to 

describe it, viz. Geometric Brownian Motion (GBM), mean-reversion diffusion and potential diffusion. The 

main purpose of this paper is to find the appropriate model for describing the behaviour of the rolling gold 

prices traded in Indonesia market. We collected the rolling gold prices, quoted in Indonesian Rupiah 

(IDR)/grams, traded in the Jakarta Futures Exchange from January 2003 to November 2008. The prices are 

based on the gold physical market Loco London and are collected from Reuters at the end of trading day. The 

prices then are converted into IDR using the exchange rates from Reuters. 

  

The rest of this paper is organized as follows. In the next chapter, we discuss the stochastic models we used in 

modelling rolling gold prices: GBM, mean-reversion diffusion and potential diffusion. Section 3 is dealing with 

modelling the dynamics of the rolling gold prices. Performance measure of each model is based on the 

comparison of the first four moments of the generated paths to the original rolling gold prices, as proposed by 

Geman (2005). Based on the best model, we then attempt to investigate its performance in forecasting the future 

pices for the next 5, 20 and 60 days. Conclusions and further research are discussed in the last section. 

 

  



2 The Deterministic and Stochastic Models 
The main purpose of this paper is to find a suitable model for the rolling gold spot prices by considering 

deterministic and stochastic components. For the deterministic component, we investigate the possibility of the 

occurrence of trend and seasonality in the data while in the stochastic components, we propose to apply three 

stochastic models: geometric Brownian motion, mean-reversion diffusion and potential diffusion models. 

Makridakis, Wheelwright and Hyndman (1998) describe a seasonal pattern when the data is influenced by the 

seasonal factors such as the quarter of the year, the month or day of the week. A seasonal pattern repeats itself 

over fixed intervals of time. A trend pattern exists when the data exhibit a long-term increase or decrease. The 

occurence of seasonality in the data can be identified when there is a large autocorrelation coefficient or partial 

autocorrelation coefficient at the seasonal lag. 

 

 The Geometric Brownian Motion (GBM) model was first used to model the stock price. Black and Scholes 

(1973) introduced the Black-Scholes model for option price valuation by assuming that the stock price follows a 

GBM and from there the GBM becomes popular and widely used for asset price model. Black (1976) used the 

GBM to model the futures commodity price dynamic. The asset price process following the GBM can be 

represented by the following stochastic differential equation (SDE):  
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

where 𝑆(𝑡) : the asset price, e.g., the spot price of commodity, at time 𝑡, 𝜇: the expected return of asset, 𝜎: the 

volatility and 𝑑𝑊(𝑡): the increment of Wiener process. By setting 𝐺(𝑆(𝑡), 𝑡) = 𝑙𝑜𝑔(𝑆(𝑡)) and applying the 

Ito’s Lemma, the process of  𝑆(𝑡) will follow the SDE 

    𝑑(𝑙𝑜𝑔(𝑆(𝑡))) = (𝜇 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡)    (1) 

Equation (1) implies that the log return, 𝑙𝑜𝑔 (
𝑆(𝑡+𝑑𝑡)

𝑆(𝑡)
), is normally distributed with: 

  Mean  𝐸 [𝑙𝑜𝑔 (
𝑆(𝑡+𝑑𝑡)

𝑆(𝑡)
)] = (𝜇 −

1

2
𝜎2)𝑑𝑡 

  Variance  𝑉𝑎𝑟 [𝑙𝑜𝑔 (
𝑆(𝑡+𝑑𝑡)

𝑆(𝑡)
)] = 𝜎2𝑑𝑡. 

 The unexpected events, e.g., the flood, the hurricane or the war, can cause the harvest failure on 

commodities and imply a shortage. In such situations, the price will increase because supply and demand are not 

balanced. In equilibrium setting, the price will eventually return towards the mean level after the event goes 

away and the supply and demand are balanced. On the other hand, overproduction will cause the price goes 

down.  Again, in the equilibrium setting, the price will return towards the mean level after the producers 

decrease the production and then the supply and the demand are balanced.  The commodity spot price modeling 

using a mean-reversion model is more realistic than the GBM model since the mean-reversion model can 

accommodate such situations. Using the GBM model, those unexpected events will always be considered as a 

normal event without consideration the prior price level and the probability of returning to the mean level.  

 The mean-reversion diffusion model is first introduced by Vasicek to model the random evolution of 

interest rates. Nowadays, such a model is widely incorporated in energy (Borovkova and Permana (2006), 

Borovkova, Permana and Pavlyukevich (2009), Lucia and Schwartz (2002)), commodity price such as 

agricultural product, gold, copper (Bernard, et.al (2006), Schwartz (1997), Pilipovic (1998), Pindyck and 

Rubinfeld (1991)) and interest rate (Cox, Ingersoll and Ross (1985)).  The asset price process following the 

mean-reversion diffusion model can be represented by the following SDE: 

                                                        𝑑 (𝑙𝑜𝑔(𝑆(𝑡))) = 𝛼 (𝑚 − 𝑙𝑜𝑔(𝑆(𝑡))) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡)           (2) 

where𝛼: the mean-reversion rate, 𝑚: the mean-reversion value and 𝑑𝑊(𝑡): the increment of Wiener process. 

 Price clustering on commodity prices tends to concentrate in a number of attraction regions. It means 

that the price moves among these attraction regions, although the time spent at a given region cannot be 

predicted and can be long.  

 Mean-reversion diffusion model is more realistic in terms of the equilibrium setting, although it also 

has a limitation. Suppose that an unexpected event causes the price leaves the mean level. After that event goes 

away, the supply and demand are balanced, the price will then return towards the mean level. If the current 

mean level is the same as the previous mean levels, a mean-reversion diffusion model can still be an appropriate 

model for the price dynamic. Unfortunately, the current level sometimes is different from the previous mean 

levels.  In that case, the price dynamic will have multiple attraction regions and a mean-reversion diffusion 

model cannot deal with such a situation. Here, the potential diffusion model will be more appropriate than the 

mean-reversion diffusion model.  

 The commodity price modeling using a potential diffusion model has been introduced by Borovkova et. 

al. (2003). The price process following a potential diffusion model is represented by the SDE: 

    𝑑𝑋(𝑡) = −𝑈′(𝑋(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡),          (3)  



where 𝑋(𝑡) = 𝑙𝑜𝑔(𝑆(𝑡)),  𝑈: 𝑅 → 𝑅 is a twice continuously differentiable function such that 𝑈(𝑡) → ∞ as 

[𝑥] → ∞ and ∫ exp (−
2𝑈(𝑋(𝑡))

𝜎2 ) 𝑑𝑥 < ∞
∞

−∞
. Those conditions assure that the invariant distribution of the process 

(𝑋(𝑡)) is a  Gibbs distribution with density  

                                                                        𝜋𝜎(𝑥) = 𝑒𝑥𝑝 (−
2𝑈(𝑥)

𝜎2 )                       (4) 

(for proof  see e.g., [12]). 

Equation (4) gives a one-to-one correspondence between the invariant distribution of the process and the 

diffusion’s drift, given by the potential. 

 

The potential 𝑈(𝑋(𝑡)) can be estimated, together with the volatility 𝜎, from historical data by first estimating 

𝐺𝜎(𝑥) =
2

𝜎2
𝑈(𝑥) = −𝑙𝑜𝑔(𝜋𝜎(𝑥)) 

by  

𝐺̂𝜎(𝑥) = −𝑙𝑜𝑔(𝜋̂(𝑥)), 

where 𝜋̂ is some estimate of the observations’ marginal density, e.g., a kernel density estimator or a histogram 

smoothed by a polynomial or a sum of Gaussian densities. 

 The potential diffusion model has some advantages. It is realistic since it is close in the spirit to a 

mean-reversion. It allows the data to have the multiple attraction regions, while a mean-reversion diffusion 

model can only deal with a single attraction region. A non-constant reversal rate in the potential diffusion model 

is also permitted. Indeed, the reversal rate incorporated in the potential diffusion model is a continuous function 

of a distance to the mean price level. Hence, the mean-reversion diffusion model can be considered as a special 

case of the potential diffusion model with a constant of reversal rate since its potential function is represented by 

a quadratic function.  

 The modeling procedure is starting by making discretization of the SDEs (1), (2) and (3) and applying 

the Euler Scheme. Discretization of SDEs (1), (2) and (3) yields the following equations: 

𝑙𝑜𝑔(𝑆(𝑡𝑖+1)) − 𝑙𝑜𝑔(𝑆(𝑡𝑖)) = (𝜇 −
1

2
𝜎2) ∆𝑡 + 𝜎√∆𝑡 𝜖𝑡, 

𝑙𝑜𝑔(𝑆(𝑡𝑖+1)) − 𝑙𝑜𝑔(𝑆(𝑡𝑖)) = 𝛼 (𝑚 − 𝑙𝑜𝑔(𝑆(𝑡𝑖))) ∆𝑡 + 𝜎√∆𝑡 𝜖𝑡, 

𝑋(𝑡𝑖+1) − 𝑋(𝑡𝑖) = −𝑈′(𝑋(𝑡𝑖))∆𝑡 + 𝜎√∆𝑡𝜖𝑡 , 

where 𝜖𝑡: standard normal random variable, 𝑋(𝑡𝑖) = 𝑙𝑜𝑔(𝑆(𝑡𝑖)) and  ∆𝑡: the unit of time step. 

Choosing the appropriate model yields the parameter estimation tasks. In this paper, the parameter estimates will 

be obtained by applying least squares or maximum likelihood method.   

 

 

3  Modelling Rolling Gold Prices 
 
We work on the rolling gold spot prices traded in Indonesia market over the period of January 2003 – 

November 2008. Figure 1 and 2 below represent the rolling gold spot prices and log spot prices over that period. 

We can see clearly that the data exhibit trend, that is the spot prices are increasing over time, but for the 

seasonality we have calculated the autocorrelation and partial autocorrelation and found that there is no 

evidence of seasonality on the data. Therefore, for our modelling purpose, we only include the trend as the 

deterministic component. In Figure 2, we include the trend line on the rolling gold log spot prices and we found 

the trend equation has slope of  11,3921 and intercept of 0,007 with coefficient determination of 96,43%. 

 

 
                     Figure 1. Rolling Gold spot price              Figure 2. Rolling Gold log spot price 

                     (January 2003 – November 2008)                        (January 2003 – November 2008) 
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The next step is modelling the stochastic components using three models, namely the GBM, mean-reversion 

diffusion and potential diffusion. First we find the parameter estimates for each model, by discretize the 

corresponding SDEs to each model and using the least square method. In this procedure we also include the 

deterministic component found in the previous step. For the potential diffusion, we use 6th degree polynomial. 

Tabel 1 gives the parameter estimates for each model with annual volatilities are given in bracket in each model. 

Based on these parameters, we generate 1000 paths of the rolling gold log spot prices and results are given in 

Table 2. 

 
Table 1. Parameter estimates for rolling gold prices (January 2003 – November 2008) 

GBM Mean-reversion diffusion Potential diffusion 

μ σ α m σ σ 

0.0001 0.0131 

(20.71%) 

-0.021 0.0005 0.013 

(20.55%) 

0.0139 

(21.98%) 

 

Table 2 gives comparison of the first four moments of the generated paths for each models and the original log 

prices. From that table, we can see that all the models can fit the mean and standard deviation quite good. But 

the GBM fail to fit the skewness, giving a negative skewness. Also for the kurtosis, both mean-reversion 

diffusion and potential diffusion give a quite good matching campared to the GBM. Potential diffusion with 6th 

degree polynomial performs a slightly better than the mean-reversion diffussion in fitting the skewness, giving 

value that closer to the original log prices skewness. Due to this fact we conclude that potential diffusion with 

6th degree polynomial along with the trend for the deterministic component is a slightly better model compared 

with other models. Figures 3, 4 and 5 give the 6th degree degree polynomial potential along with their rate of 

reversion and one of generated log prices path. 

 

 
Table 2. The first four moments of the original and generated rolling gold log prices (January 2003 – November 2008) 

Moment Original log 
prices 

Generated log prices 

GBM Mean-reversion 
diffusion 

Potential 
diffusion 

Mean 11.9684 12.0733 11.972 11.9716 

Std. deviation 0.3364 0.3646 0.3307 0.3295 

Skewness 0.1726 -0.0132 0.0441 0.0544 

Kurtosis 1.8622 2.1688 1.8249 1.8215 

 

 
         Figure 3. The 6th degree polynomial                  Figure 4. Rate of reversion              Figure 5. Generated log prices 

             Potential (Jan 2003 – Nov 2008)     (Jan 2003 – Nov 2008)                    (Jan 2003 – Nov 2008) 

 
 

Many papers propose time series models to predict the future spot prices and they perform quite well. In this 

paper, we try to investigate the performance of the linear trend plus the 6th degree polynomial potential model 

in predicting the future rolling gold spot prices. Based on the current rolling gold spot prices and the parameter 

estimates we found for the suitable model, 1000 rolling gold prices representing price forecast for the next 5, 20 

and 60 days (the next 1-week, the next 1-month and the next 3-month) are generated. The distributional 

characteristics of relative errors are calculated and given in Table 3 along with 95% confidence interval for the 

price forecast in Figure 6.  We define the relative errors as the discrepancy between the original prices obtained 

from the market and the forecasted prices from the Monte Carlo simulation relative to the original prices. From 

Table 3 we found that the means of relative errors are all positive for n=5, 20 and 60. They indicate that 

forecasted prices are overestimated. Also from Figure 6, we can see that the original log spot prices always lie 

within the 95% confidence interval for n=5, 20 and 60 days. However, forecasted prices for the next 1-week 

give smallest standard error compared with the forecasted prices for the next 1-month and the next 3-month. 
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This results are inline with a common philosophy in forecasting that is “use as many as historical data and use 

them to forecast values that are not far away into the future”.  In general, our best model, trend plus 6th degree 

polynomial potential perform quite well in term of predicting the future log spot prices. 

 
Table 3. Distributional characteristics of relative error of the n-day forecast log prices using 6th degree polynomial potential 

Distributional characteristic The next n-day forecast 

n=60 n=20 n=5 

Mean 0.0489 0.0146 0.0002 

Standard error 0.0349 0.0215 0.011 

Minimum -3.5069 -2.3886 -1.3241 

Maximum 3.635 2.45 1.4308 

 

 

 
Figure 6. The 95% confidence interval of the n-day forcast log price, potential diffusion 6th degree model, January 2003 – November 2008 

n=60 (left), n=20 (centre), n=5 (right) 

 

 

4. Conclusions and Further Research 

 
We have modelled the rolling gold prices traded in Indonesia market as a combination of deterministic and 

stochastic component over the period of January 2003 to November 2008. Our investigation concludes that for 

the deterministic component, rolling gold prices do not exhibit seasonality but they do exhibit trend. For the 

stochastic component, we found that potential diffusion with 6th degree polynomial potential performs a slightly 

better than the GBM and mean-reversion diffusion since it gives parameters’ values, such as  the mean, standard 

deviation, skewness and kurtosis that are closer to the parameters of the original log rolling gold prices. 

In this paper, we use the stochastic models for describing the dynamics of rolling gold prices as a stepping stone 

for our further research that is to develop models for option pricing on the rolling gold, as proposed by 

Anderluch and Borovkova (2008). This further research can not be done if we only include the deterministic 

component, although as mentioned before that the trend gives 96,43% coefficient of determination, a quite good 

representation for the original rolling gold prices. Another avenue for further research is to develop a volatility 

model for the dynamic of the rolling gold prices, as proposed by Heston (1993) for bond and currency options.. 

In this paper we assume that the volatility of the rolling gold prices is constant although it is not quite 

appropriate in reality. Therefore, developing a volatility model is an essensial way in order to better describe the 

dynamics of the rolling gold prices. 
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