BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan yang dapat diambil dari uji eksperimental pengaruh serat baja terhadap kekuatan dari beton dengan agregat kasar daur ulang adalah:

- Nilai kuat tekan beton rata rata untuk campuran dengan kadar serat 1% dan 2%. yang diperoleh dari hasil pengujian masing – masing adalah 37,140 MPa dan 45,466 MPa. Nilai kuat tekan ini masing – masing hanya mencapai 74,28% dan 90,93% dari nilai kuat tekan karakteristik rencana sebesar 50 MPa.
- 2. Nilai kuat tekan beton rata rata untuk campuran dengan kadar serat 3%. yang diperoleh dari hasil pengujian adalah 43,873 MPa, sedangkan nilai kuat tekan beton karakteristik yang diperoleh sebesar 39,22 MPa. Nilai kuat tekan karakteristik ini hanya mencapai 78,44% dari nilai kuat tekan karakteristik rencana sebesar 50 MPa.
- 3. Faktor yang mempengaruhi tidak tercapainya kuat tekan yang direncanakan antara lain :
 - Agregat kasar yang digunakan merupakan agregat kasar daur ulang sehingga daya lekatnya lebih lemah karena adanya lapisan semen lama yang melekat di permukaan batunya.
 - Penggunaan semen komposit (Portland Composite Cement) memiliki daya lekat yang lebih rendah dibandingkan jenis semen yang disarankan oleh standar mix design yang digunakan, yaitu Ordinary Portland Cement (OPC).
 - Pengerjaan pengecoran dilakukan dalam volume besar, sehingga pencampurannya kurang sempurna karena adanya serat baja.
- 4. Nilai kuat tarik belah rata rata yang diperoleh dari hasil pengujian untuk campuran dengan kadar serat 0%, 1%, 2%, dan 3% masing masing adalah 4,198 MPa, 4,588 MPa, 5,662 MPa, dan 7,394 MPa. Hal ini menunjukkan

- bahwa penggunaan serat baja dengan kadar 3% paling optimal untuk meningkatkan kekuatan tarik belah dari beton.
- 5. Nilai kuat geser yang diperoleh dari hasil pengujian untuk campuran dengan kadar serat 0%, 1%, 2%, dan 3% masing masing adalah 5,98 MPa, 5,88 MPa, 9,2 MPa, dan 10,83 MPa. Hal ini menunjukkan bahwa penggunaan serat baja dengan kadar 3% menghasilkan peningkatan kekuatan geser yang paling maksimal, namun penggunaan serat baja dengan kadar 2% paling optimal untuk meningkatkan kekuatan geser dari beton karena peningkatan kekuatan yang terjadi pada penggunaan serat dengan kadar 3% tidak signifikan dibandingkan penggunaan serat dengan kadar 3%.
- 6. Nilai rata rata tegangan leleh yang diperoleh dari hasil pengujian lentur untuk campuran dengan kadar serat 0%, 1%, 2%, dan 3% masing masing adalah 6,611 MPa, 5,185 MPa, 6,788 MPa, dan 7,393 MPa. Sedangkan nilai rata tegangan ultimit yang diperoleh dari hasil pengujian untuk campuran dengan kadar serat 0%, 1%, 2%, dan 3% masing masing adalah 6,611 MPa, 5,185 MPa, 8,771 MPa, dan 8,172 MPa. Hal ini menunjukkan bahwa penggunaan serat baja dengan kadar 2% paling optimal untuk meningkatkan kekuatan tarik lentur dari beton.
- 7. Peningkatan kuat tarik belah, kuat geser, dan kuat tarik lentur sebanding dengan penambahan kadar serat.
- 8. Beton dengan agregat kasar daur ulang tanpa tulangan dengan kadar serat 0% dan 1% tidak memiliki daktilitas. Efek dari penggunaan serat baja mulai terlihat pada penggunaan kadar serat dengan kadar lebih besar dari 2%.
- 9. Berat jenis beton dengan agregat kasar daur ulang dengan tambahan serat baja antara 2300 kg/m³ hingga 2400 kg/m³ dengan rata-rata 2350 kg/m³.

5.2 Saran

Saran yang dapat diberikan berdasarkan uji eksperimetal beton dengan agregat kasar daur ulang yang diberi tambahan serat baja adalah:

1. Pemeriksaan karakteristik agregat harus dilakukan dengan teliti karena, sifat karakteristik dari agregat sangat mempengaruhi kekuatan dari beton.

- 2. Studi mengenai pemakaian superplasticizer yang tepat dengan nilai slump perlu dilakukan agar diperoleh workability yang baik dan tidak terjadi segregasi.
- 3. Perlu dibuat benda uji untuk umur 60 dan 90 hari jika melakukan penelitian mengenai kekuatan beton mutu tinggi dengan serat baja agar data yang dihasilkan dapat lebih lengkap dan akurat.

DAFTAR PUSTAKA

- Altun et al. (2007). Effects of Steel Fiber Addition on Mechanical Properties of Concrete and RC Beams. Construction and Building Materials 21.3. 654-61.
- American Concrete Institute. (2001). *Removal and Reuse of Hardened Concrete*, ACI 555R-01 American Concrete Institute, Farmington Hills, MI.
- American Concrete Institute. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2002), ACI 211.1-91 American Concrete Institute, Farmington Hills, MI.
- American Concrete Institute. (2008). Guide for Selecting Proportions for Normal, High-Strength Concrete Using Portland Cement and Other Cementitious Materials, ACI 211.4R-08 American Concrete Institute, Farmington Hills, MI
- American Concrete Institute. (2008). *Building Code Requirements for Structural Concrete*, ACI 318-08 and ACI 318M-08. American Concrete Institute, Farmington Hills, MI.
- American Society for Testing And Materials. (1989). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM C-496. Pennsylvania, United States.
- American Society for Testing And Materials. (1989). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM C-39. Pennsylvania, United States.
- American Society for Testing And Materials. (1989). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, ASTM C-127. Pennsylvania, United States.
- American Society for Testing And Materials. (1989). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM C-128. Pennsylvania, United States.
- Heeralal et al. Flexural Fatigue Characteristics of Steel Fiber Reinforced Recycled Aggregate Concrete (SFRRAC). Facta Universitatis Series:

Architecture and Civil Engineering Facta Univ., Arch. Civ. Engl., 7(1), 19-33.

Li, Zongjin. (2011). Advanced Concrete Technology. Willey, Hooboken, NJ.