BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pemodelan, analisis dan pembahasan dari skripsi ini dapat diambil beberapa kesimpulan, antara lain:

- 1. Jembatan Cisomang mampu menahan beban Kereta Api *South African*Class 6E1 Series 4 E1525 secara statik.
- 2. Secara struktural, Jembatan Cisomang mampu menerima pembebanan kereta api berkecepatan 245 km/jam apabila ditambahkan *Tuned Mass Damper* (TMD). Keadaan eksisting Jembatan Cisomang diasumsikan tidak dipasang peredam. Nilai percepatan vertikal struktur akibat pembebanan dinamik Kereta Api *South African Class 6E1 Series 4 E1525* adalah 6,992 m/s². Batas percepatan vertikal struktur berdasarkan keamanan yang ditentukan oleh EN 1990:2002 adalah 3,5 m/s². Percepatan vertikal struktur yang terjadi tidak memenuhi kriteria keamanan.
- 3. TMD digunakan untuk mengurangi nilai percepatan struktur jembatan. Berdasarkan hasil dari pemodelan, rasio massa TMD yang paling optimum untuk mengurangi respon dinamik struktur adalah 1% dengan reduksi nilai percepatan vertikal struktur maksimum sebesar 63,14%. Dengan memasang TMD 1% pada delapan titik di tengah bentang, nilai percepatan vertikal struktur akibat pembebanan E1525 dapat dikurangi sehingga menjadi 2,577 m/s². Besarnya nilai percepatan vertikal struktur dapat dikategorikan sebagai aman, namun tidak nyaman.

5.2 Saran

Dari hasil analisis, penulis dapat memberikan saran sebagai berikut.

1. Kapasitas Jembatan Cisomang dalam menerima pembebanan kereta api berkecepatan 245 km/jam tidak hanya dipengaruhi oleh kekuatan struktural

saja sehingga diperlukan peninjauan lebih lanjut terhadap kualitas rel, balas, dan *maintainance*.

DAFTAR PUSTAKA

- Clough, Ray W dan Joseph Penzien. (1975). *Structural Dynamics*. Tokyo McGraw-Hill Kogakusha.
- Widarda, Dina Rubiana dan Ediansjah Zulkifli. (2013, Desember). *Penerapan Sistem Kontrol Struktur pada Jembatan*.
- BMS 6-M1, *Bridge Design Manual: Volume 1.* (1992). Directorate General of Highways Ministry of Public Works Republic of Indonesia
- BMS 7-K, Peraturan Perencanaan Teknik Jembatan: Jilid 1. (1992). Departemen Pekerjaan Umum Direktorat Jenderal Bina Marga Direktorat Bina Program Jalan
- BS NA EN 1990 (2005), *UK National Annex for Eurocode Basis of structural design*. (2005). British Standards Institution, London
- RSNI T-03-2005, Perencanaan Struktur Baja untuk Jembatan. (2005). Badan Standardisasi Nasional
- SNI 1725:2016, Pembebanan untuk Jembatan. (2016). Badan Standardisasi Nasional
- RSNI3 2833:201X, Perancangan Jembatan terhadap Beban Gempa (201X). Badan Standardisasi Nasional
- Darmatin, Gesa Akbar. (2015, November). Analisis Penggunaan Tuned Mass Damper pada Jembatan Kereta Api Akibat Kereta Api Berkecepatan Tinggi.