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Abstract

This thesis proposes a diagram-based formalism for verifying temporal prop-
erties of reactive systems. Diagrams integrate deductive and algorithmic
verification techniques for the verification of finite and infinite-state systems,
thus combining the expressive power and flexibility of deduction with the
automation provided by algorithmic methods.

Our formal framework for the specification and verification of reactive
systems includes the Generalized Temporal Logic of Actions (TLA*) from
MERz for both mathematical modeling reactive systems and specifying tem-
poral properties to be verified. As verification method we adopt a class of
diagrams, the so-called predicate diagrams from CANSELL et al.

We show that the concept of predicate diagrams can be used to verify not
only discrete systems, but also some more complex classes of reactive systems
such as real-time systems and parameterized systems. We define two variants
of predicate disgrams, namely timed predicete diegrams and parameterized
predicate diagrams, which can be used to verify real-time and parameterized
systems.

We prove the completeness of predicate diagrams and study an approach
for the generation of predicate diagrams. We develop prototype tools that
can be used for supporting the generation of diagrams semi-automatically.







Zusammenfassung

In dieser Arbeit schlagen wir einen diagramm-basierten Formalismus fiir die
Verifikation reaktiver Systeme vor. Diagramme integrieren die deduktiven
und algorithmischen Techniken zur Verifikation endlicher und unendlicher
Systeme, dadurch kombinieren sie die Ausdrucksstéirke und die Flexibilitit
von Deduktion mit der von algoritmischen Methoden unterstiitzten Automa-
tisierung.

Unser Ansatz fiir Spezifikation und Verifikation reaktiver Systeme schliefit
die Generalized Temporal Logic of Actions (TLA*) von MERZ ein, die fiir die
mathematische Modellierung sowohl reaktiver Systeme als auch ihrer Eigen-
schaften benutzt wird. Als Methode zur Verifikation wenden wir Pridikaten-
diagramme von CANSELL et al. an.

Wir zeigen, daf8 das Konzept von Pridikatendiagrammen verwendet wer-
den kann, um nicht nur diskrete Systeme zu verifizieren, sondern auch kom-
pliziertere Klassen von reaktiven Systemen wie Realzeitsysteme und parame-
trisierte Systeme. Wir definieren zwei Varianten von Pridikatendiagrammen,
namlich gezeitete Pridikatendiagramme und parametrisierte Pradikatendia-
gramme, die benutzt werden kénnen, um die Realzeit- und parametrisierten
Systeme zu verifizieren.

Die Vollsténdigkeit der Pradikatendiagramme wird nachgewiesen und ein
Ansatz fiir die Generierung von Pradikatendiagrammen wird studiert. Wir
entwickeln prototypische Werkzeuge, die die semi-antomatische Generierung
von Diagrammen unterstiitzen.
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Chapter 1

Introduction

The dependency on its own technological achievements by modern society
is getting more and more. Powerful computer systems, which are the back-
bones of almost conceivable technology today, are in the development or in
the implementation stages. The complexity of these systems is growing cease-
lessly. Most of today’s computing systems are characterized by an ongoing
interaction with their environments. This interaction occurs in various forms
such as the transmission of data over a communication network to another
machine, interaction with a human user, or the exchange of information with
the sensors and actuators of an embedded control system. Such systems
are called reactive, in contrast to fransformational systems that compute an
output from a given input.

Considering our dependency on these systems, it is clear that they should
be correct. Reactive systems are most often composed of several communi-
cating concurrent processes. The inherent complexity of concurrency and
communication makes the discovery of design errors a difficult task. Not
only may there be mistakes in the calculations such system perform (as in
transformational systerns), but there is also the possibility of synchronization
failures (such as deadlocks, starvation, unexpected message reception ete.).
One of the most challenging problems facing today’s software engineers and
coraputer scientists is therefore to find ways and establish techniques in order
to reduce the number of errors in reactive systems.

This thesis presents a methodology for the formal analysis of some classes
of reactive systems.
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1.1 Classification of reactive systems

Reactive systems are commonly classified as discrete, real-time and hybrid
[77):

e A discrete system only represents the qualitative aspect of time, that
is the order of events, but does not measure the time elapsed between
these events. The behavior is fully described by the discrete events.

+ A real-time system captures the metric aspects of time; discrete events
may have time stamps. *

o In hybrid systems, we allow the inclusion of variables that evolve contin-
nously over time between discrete events. The evolution of the contin-
uous variables is described separately from the discrete events, usually
by differential equations.

The behavior of a reactive system can be characterized in different ways,
for example by the stream of outputs produced by the system, or by the
actions taken by the system. In this thesis, a reactive system is characterized
by the sequence of states, which are interpretations of the variables traversed
by the system. We call a system finite state if this set is finite, and otherwise
infinite state. Of course all real-time and hybrid systems are infinite-state
due to the presence of real-valued clock and continuous variables.

Reactive systems usually consist of a collection of processes running par-
allel in the systems. Parallel systems can be classified as interleaving and
non-interleaving systems. An interleaving system is a system in which each
step can be attributed to exactly one process. A non-interleaving system
allows steps that represent simultaneous operations of two or more differ-
ent processes. When a paralle]l system consists of a collection of identical
processes, it is categorized as a parameterized system.

1.2 Formal specification and verification

Formal methods are a collection of notations and techniques for describing
and analyzing systems. These methods are formal in the sense that they
are based on some mathematical theories, such as logic, automata or graph
theory. They are aimed at enhancing the quality of systems. Formal spec-
ification techniques introduce a precise and unambiguous description of the
properties of systems. This is useful in eliminating misunderstanding and
can be used further for debugging systems. Formal analysis techniques can
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be used to verify that a system satisfies its specification or to systematically
seek for cases where it fails to do so.

A formal framework for the specification and verification of reactive sys-
tems should include at least the following parts {78, 88]:

o a mathematical model of reactive systems,
e o requirement specification or property languages and

¢ a verification method.

Model The large majority of frameworks that include a verification me-
thod use transition systems as their computational model of reactive systems.
This is certainly due to the simplicity of this model. A transition system is
essentially a graph, where the nodes represent system’s states and the edges
represent the atomic transitions between these states. Concurrency is mod-
eled by non-deterministic interleaving of atomic actions. Another important
ingredient in the description of transition systems for modeling reactive sys-
tems are fairness and liveness conditions that require some actions to be
eventually taken or some state to be eventually reached. These conditions
help to balance the local non-determinism of transition systems of choosing
among actions that are permitted at a given source state and lead to different
possible target states.

Property In order to reason about the behavior of reactive systems, tem-
poral logic was proposed as a convenient specification or property language.
Temporal logics are extensions of classical (propositional and/or first-order)
logics, incorporating a model of the flow of time, either as metric constraints
or via a suitable semantics. Temporal logics are often classified according to
whether time is assumed to have a linear or a branching structure.

Verification Verification of reactive systems consists of establishing whe-
ther a reactive systems satisfies its specification, that is, whether all possible
behaviors of the system are included in the property specified. For finite-
state systems and a restricted class of infinite-state systems, verification of
temporal-logic properties is decidable: algorithins can be devised that deter-
mine in a finite number of steps whether a system satisfies its specification.
For the vast majority of infinite-state systems no such algorithms exist; the
problem is undecidable. In this case, verification relies on human interaction
and heuristics.
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The use of temporal logics for the specification and verification of reactive
systems goes back to PNUELI’s seminal paper on temporal logic [94]. For-
mulas of temporal logic are interpreted over runs of transition systems and
can thus express properties of reactive systems. Many useful properties of
reactive systems can be expressed in temporal logics, including safety prop-
erties ("nothing bad happens”) and liveness properties ("something good
happens™).

1.3 Verification techniques

There are basically two approaches to verification of reactive systems: the
algorithmic approach on one hand and the deductive approach on the other
hand. When verifying temporal properties of reactive systems, algorithm
methods are used when the problem is decidable and deductive methods are
employed otherwise.

The most popular algorithmic verification method is model checking, in-
dependently proposed by CLARKE & EMERSON [27, 28] and QUEILLE &
SIFAKIS [95]. A complete state graph of the system is built and specialized
methods are used to check whether all paths through this graph conform
to some properties. A counterezample is found whenever a path that does
not satisfy a temporal property is encountered. Although this method is
fully automatic for finite-state systems, it suffers from the so-called state-
explosion problem. The size of the state space is typically exponential in
the number of components, and therefore the class of systems that can be
handled by this method is limited. State space reduction techniques such
as symbolic representations [25, 82, 22, symmetry [29, 43] and partial order
reductions [52, 92, 105] have yielded good results but the state spaces that
can be handled in this manner are still quite modest.

Automata-theoretic verification methods [108, 66] are closely related to
moadel checking, in which both the system and the property are represented by
w-automata (automata on infinite words) and automata-theoretic methods
are used to establish language inclusion.

~On the other end of the spectrum we find deductive verification methods
based on theorem proving; these methods are extension of the proof methods
originally established by FLOYD [47] and HOARE [56] for sequential systems.
They typically reduce the proof of a temporal property to a set of proofs of
first-order verification conditions, which can then be dealt by standard theo-
rem provers. Deductive methods are very powerful and generally applicable
to infinite-state systems, but suffer from the high level of user interaction
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required to complete a proof.

While it is clear that any way out of this impasse must rely on a com-
bination of theorem proving and model checking, specific methodologies are
needed to make such a combination work with a reasonable degree of au-
tomation.

1.4 Abstraction

An attractive method for proving a temporal property ¢ for a reactive system
& is to find a simpler abstract system A such that if 4 satisfies ¢ then S
satisfies ¢ as well. In particular, if .4 is finite-state, the validity of ¢ for A4
can be established antomatically using a model checker, which may not have
been possible for & due to an infinite or overly large state-space.

Thus, abstraction is a key methodology in combining deductive and al-
gorithmic techniques. Abstraction can be used to reduce problems to model-
checkable form, where deductive tools are used to construct valid abstract
descriptions or to justify that a given abstraction is valid.

There is much work on the theoretical foundations of reactive system
abstraction [31, 37, 74, 36, 53, 33, 75, 40], usually based on the ideas of
abstract interpretation [34)].

Most abstractions weakly preserve temporal properties: if a property
holds for the abstract systems, then a corresponding property will hold for
the concrete one. However, the converse will not be true: not all properties
satisfied by the concrete system will hold at the abstract level. Thus, only
positive results transfer from the abstract to the concrete level. This means,
in particular, that abstract counter-examples will not always correspond to
concrete ones.

1.5 Diagram-based verification

The deductive approach for verifying temporal properties of reactive systems
is based on verification rules, which reduce the system validity of a temporal
property to the general validity of a set of first-order verification conditions.
While this methodology is complete, relative to the underlying first-order
reasoning, the proofs do not always reflect an intuitive understanding of the
system and its specification; without this intuition, the proofs can be difficult
to construct.

The need for a more intuitive approach to verification leads to the use of
diagram-based formalisms. Usually, these diagrams are graphs whose vertices
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are labeled with first-order formulas, representing sets of systemn states, and

whose edges represent possible system transitions. This approach combines

somze of the advantages of deductive and algorithmic verification: the process

is goal-directed and incremental, and can handle infinite-state systems.
Some features shared by these formalisms are [19, 26]:

¢ Diagrams (or sequences of diagrams) are formal proof objects, which
succinetly represent a set of verification conditions that replaces a com-
bination of textual verification rules.

¢ The graphical nature of diagrams makes them easier to construct and ._ _
understand than text-based proofs and specifications.

¢ Diagrams can describe and verify infinite-state systems using a finite
and often compact representation.

» Diagrams can be viewed as the abstract representation of the systems
being considered.

o The construction of a diagram can be incremental, starting from a
high-level outline and then filling in details as necessary.

o The verification conditions are local to the diagram; failed verification
conditions poiut to missing edges or nodes, or possible bugs in the
system. The necessary global properties of diagrams can be proved
algorithmically.

» Besides their use as a formal basis for verification, diagrams can also
serve as support for explaining how systems are working and for docu-
menting them.

There are some work using graphs to visualize and structure temporal
proof, for example the diagram from OwICKI and LAMPORT [90], proof charts
from Cousort [38], Predicate-action diagrams proposed by LAMPORT [70],
verification diggrams from MANNA & PNUELI [79], generalized verification
diagram from SiPMA [99] and predicate diagrams from CANSELL et al. [26].

1.6 Scope of the thesis

In this work, three classes of reactive systems are considered: discrete sys-
tems, real-time systems and parameterized systems. We will use the Gener-
alized Temporal Logic of Action (TLA*) from MERZ [83], which is a variant
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of Temporal Logic of Action (TLA) from LAMPORT [69], to formalize our
methodology. Our choice is due to its completeness; in the sense that it
provides all the components of a formal framework for the specification and
verification of reactive systems as mentioned in Section 1.2. Like in TLA, in
TLA* there is no distinction between systems and properties, both are repre-
sented as formulas. 1t also provides proof systems that can be used to prove
that a specification satisfies a desired property. This verification process is
reduced to the proof that the specification implies the property.

In this thesis, we will follow the diagram-based verification techniques.
The verification will be done by means of predicate diagrams from CANSELL
et al. It is already shown that this diagram is suitable to TLA formalism
[26].

The main goal of this thesis can be stated in the following questions:

1. How can reactive systems be represented in TLA*?
2. How can predicate diagrams be used to verily discrete systems?

3. What about the completeness of predicate diagrams, i.e. for any spec- -
-~ — ————ificationandany formula ol -the-temporal propositional logic,-if-the————————
specification implies the formula, can the implication be proven by a
suitable predicate diagram?

4. How far can predicate diagrams be used to verify some other classes of
reactive systems, in particular the more complex systems than discrete
systemns such as real-time systems and parameterized systems?

5. Is it possible to generate or to construct predicate disgrams automati-
cally?

1.7 Chapter outlined

In Chapter 2 mathematical preliminaries are introduced, including set nota-
tions, strings and languages, graphs and classical logics, in order to establish
the terminology and notational used in this book.

Chapter 3 is addressed to the properties of reactive systems. First, we
give the very general definition of properties as arbitrary subsets of infinite
states. Second, we give the definition of the syntax and semantics of TLA*
introduced by MERZ [83]. We also present the general form of specification we
will use in this sequel and introduce the writing style for writing specifications
in the next sections.
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In the following chapter, Chapter 4, we will consider a class of finite au-
tomata over infinite words, called Muller automata [86}, including the formal
definition and an algorithm for translating pTLA* formulas to a Muller au-
tomaton. We also briefly describe timed automata, which will be used in the
verification of real-time systerns.

Chapter 5 deals with the verification of discrete systems. We define the
formula that will be used to represent the specification of discrete systems.
We then present predicate diagrams, including the definition and the steps
to be done in order to verify discrete systems using the diagrams. As illus-
tration, we take the Bakery Algorithm. We show that predicate diagram is
complete, i.e. for any specification and any formula of tie temporal propo-
sitional logic, if the specification implies the formula, then there exists a
suitable predicate diagram that can be used to prove the implication.

Chapter 6 is devoted to the specification and verification of real-time
systems. First, we give the standard formula for real-time specification we
use in this book. Second, we define a variant of predicate diagrams, which
we call timed predicate diagrams that can be used to verify real-time systems.
As illustration, we take the FISCHER’s protocol problem.

The verification of parameterized systems will be considered in the fol-
lowing chapter. After defining the specification of parameterized systems,
we explain how can predicate diagrams be used to verify the properties re-
lated to whole processes in the protocol. As a motivated example we take

-the Tickets protocol. We then define a variant of predicate diagrams called

parameterized predicate diagrams that can be used to verify the property of
a single process in the Tickets protocol.

In Chapter 8 the method for automatically generation of disgrams will
be studied. It is started by briefly describing the concept of abstract inter-
pretation and the algorithm of the diagrams generation. Two tools that have
been developed in this work will be presented. Then it will be shown how
these tools can be used in the generation of diagrams for the case studies
presented in the previous chapters, namely the Bakery algorithm and the
Ticket protocol.

The final chapter concludes the thesis with a review of its goals and their
achievements and an outlook on future research.






