Chapter 9

Conclusion and future work

We have studied the specification and verification of some classes of reac-
tive systems, namnely discrete systems, real-time systems and parameterized
systems. We use TLA* from MERZ to formalize our approach.
The general formula for representing reactive systems is as follows:
Az : Init AO[Newxt]y AL
where

e 1 is a list of internal variable,

e [nit is a state predicate that describes the initial states,

e Next is an action characterizing the system’s next-state relation,
e ¢ is a state function, and

e [ is a formula stating the liveness conditions expected from the system.

This formula essentially describes a state machine, angmented by liveness
condition, that generates the allowed behaviors of the system under speci-
fication. For the more specific classes of reactive systems, in particular the
classes of reactive systems we have considered in this thesis:

¢ For discrete systems, a specification is & formula of the form Spec =
Init A O[Next], A Ly, where Ly is a conjunction of formula WF,{A) and
SF,(A) where A is an action which appears as disjunct of Next.

o For real-time systems, a specification is a formula of the form RTSpec =
Init A O[Next], A RTNow(v) A RT where

— RTNow(v) is the formula that asserts that now (the variable used
to model real-time) is initially equal to 0 and it increases mono-
tonically and without bound and
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— RT is a conjunction of real-time bound formulas RTBound (Ai, v,
ti, d;, €;) where A; is a sub-action or disjunct of Next, £;, d; and
e; is the timer, lower bound and upper bound of A;, respectively.

¢ For parameterized systems, a specification is a formula of the form
parSpec = Init AD[3k € M : Next(k)l, A\VE € M : Lp(k).

In our methodology, we use a class of diagrams called predicate diagrams
as abstract representation of the discrete systems being considered. Assume
given a specification of discrete system Spec and a temporal formula F, the
verification of discrete systems using our diagrams can be done in two steps:

o The first step is to find a diagram that conforms Spec. To prove that
a diagram conforms to a specification, we equip the diagram with a
corresponding conformance theorem in order to produce some proof
obligations. The proof is done deductively either manually by hand or
by using an automatic theorem prover.

o The second step is to prove that all traces through the diagram satisfy
F. In this step, we view the diagram as a finite transition system that
is amenable to model checking. All predicates and actions that appear
as labels of nodes or edges are then viewed as atomic propositions.
Regarding predicate diagrams as finite Jabeled transition systems, their
runs can be encoded in the input language of standard model checkers
such as SPIN.

Thus, our methodology can be viewed as an integration between deductive
and algorithmic verification techniques.

In Section 5.6, we have successfully proven the completeness of predicate
diagram. The proof is done in four steps:

& The construction of formula automaton M’ which is a Muller automs-
ton accepting exactly the behaviors satisfying £

e The construction of specification automaton M?*, which is a Muller
automaton such that the accepting condition is defined in a way such
that it exactly characterizes the fairness of Spec.

¢ The construction of product automaton MP, which is the product au-
tomaton of MY and M. Thus, the properties of MP? are inherited
from M/ and M°.
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e The last step is the translation of the product automaton into predicate
diagram.

We have also shown that the concept of predicate diagrams is capable
enough to handle some other classes of reactive systems such as real-time
systems and parameterized systems. To verify real-time systems, we define a
variant of predicate diagrams called timed predicate diagrams or TPDs. The

idea of these diagrams is to use the components of predicate diagrams re-

lated to discrete properties and to replace the components related to the
fairness conditions with some components related to real time condifions.
For the components related to real-time property, we adopt the structure of
timed-automata. Thus, in one direction, TPDs can be viewed as an extension
of predicate diagrams. In the other direction, we may say that predicate
diagrams are restricted TPDs. Particularly, when we eliminate all the com-
ponents of timed predicate diagrams that are related to real-time property,
then we have predicate diagrams without fairness conditions. We call such
a predicate diagram the uniimed version of a TPD. In the context of pa-
rameterized systems, we have shown that the {ordinary) predicate diagrams
can still be used for proving the properties that are related to the whole
processes. Whereas to prove the universal properties, i.e. the properties
that are reclated to one single process, we define a class of diagrams called
parameterized predicate diagrams or PPDs.

The verification of realtime systems and parameterized systems using
TPDs and PPDs are similar to the verification of discrete systems using pred-
icate diagrams.

Using the concept of abstract interpretation we have shown that our
diagrams can be generated semi-automatically,. We use the term ”semi-
automatically”, since the user’s intervention is still needed, in particular for
defining the abstraction functions and rewriting rules. We have developed
two prototype tools: PreDiaG, for the generation of predicate diagrams, and
parPreDiaG, for the generation of PPDs.

Some possible tracks for future work that come to wind are listed below.

e Hybrid systems. Basically, hybrid systems can be viewed as the
union of discrete and real-time systems. However, it is still needed to
study the special characteristic of this class of systems and to investi-
gate the extension or modification that shounld be done over predicate
disgrams.

o Completeness of TPDs and PPDs. In this work, we only consider
the completeness of predicate diagrams. The proof of the completeness
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of TPDs and PPDs should be an interesting topic for a research. For
proving the completeness of TPDs, it is indicated, that we can use the
concept of timed automata and do the similar proof as we did In proving
the completeness of predicate diagrams. However, this indication is still
needed to be explored. Unfortunately, the proof of pris is still an open
question.

Tool support. For the practical application of our method tool sup-
port is essential. The tools we have implemented are prototypes that
are still needed to be improved, in particular in the aspect of graphical
user interface. We have shown that the generation of diagrams can be
done incrementally. We should or may refine the diagrams resulted by
our tools, until we get the desired diagrams. Thus, there is also a need
to have a good graphical editor that can support the refinement of the
diagrams. 1t is also desirable to have a translator from TLAY to MONA
syntax and to integrate these tools with an existing automatic theorem
prover in order to prove the proof obligations whenever needed.
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