Chapter 9

Conclusion and future work

We have studied the specification and verification of some classes of reac-
tive systems, namnely discrete systems, real-time systems and parameterized
systems. We use TLA* from MERZ to formalize our approach.
The general formula for representing reactive systems is as follows:
Az : Init AO[Newxt]y AL
where

e 1 is a list of internal variable,

e [nit is a state predicate that describes the initial states,

e Next is an action characterizing the system’s next-state relation,
e ¢ is a state function, and

e [is a formula stating the liveness conditions expected from the system.

This formula essentially describes a state machine, angmented by liveness
condition, that generates the allowed behaviors of the system under speci-
fication. For the more specific classes of reactive systems, in particular the
classes of reactive systems we have considered in this thesis:

¢ For discrete systems, a specification is & formula of the form Spec =
Init A O[Next], A Ly, where Ly is a conjunction of formula WF,{A) and
SF,(A) where A is an action which appears as disjunct of Next.

o For real-time systems, a specification is a formula of the form RTSpec =
Init A O[Next], A RTNow(v) A RT where

— RTNow(v) is the formula that asserts that now (the variable used
to model real-time) is initially equal to 0 and it increases mono-
tonically and without bound and

133

134 Chapter 9

— RT is a conjunction of real-time bound formulas RTBound (Ai, v,
ti, d;, €;) where A; is a sub-action or disjunct of Next, £;, d; and
e; is the timer, lower bound and upper bound of A;, respectively.

¢ For parameterized systems, a specification is a formula of the form
parSpec = Init AD[3k € M : Next(k)l, A\VE € M : Lp(k).

In our methodology, we use a class of diagrams called predicate diagrams
as abstract representation of the discrete systems being considered. Assume
given a specification of discrete system Spec and a temporal formula F, the
verification of discrete systems using our diagrams can be done in two steps:

o The first step is to find a diagram that conforms Spec. To prove that
a diagram conforms to a specification, we equip the diagram with a
corresponding conformance theorem in order to produce some proof
obligations. The proof is done deductively either manually by hand or
by using an automatic theorem prover.

o The second step is to prove that all traces through the diagram satisfy
F. In this step, we view the diagram as a finite transition system that
is amenable to model checking. All predicates and actions that appear
as labels of nodes or edges are then viewed as atomic propositions.
Regarding predicate diagrams as finite Jabeled transition systems, their
runs can be encoded in the input language of standard model checkers
such as SPIN.

Thus, our methodology can be viewed as an integration between deductive
and algorithmic verification techniques.

In Section 5.6, we have successfully proven the completeness of predicate
diagram. The proof is done in four steps:

& The construction of formula automaton M’ which is a Muller automs-
ton accepting exactly the behaviors satisfying £

e The construction of specification automaton M?*, which is a Muller
automaton such that the accepting condition is defined in a way such
that it exactly characterizes the fairness of Spec.

¢ The construction of product automaton MP, which is the product au-
tomaton of MY and M. Thus, the properties of MP? are inherited
from M/ and M°.

Conclusion and future work 135

e The last step is the translation of the product automaton into predicate
diagram.

We have also shown that the concept of predicate diagrams is capable
enough to handle some other classes of reactive systems such as real-time
systems and parameterized systems. To verify real-time systems, we define a
variant of predicate diagrams called timed predicate diagrams or TPDs. The

idea of these diagrams is to use the components of predicate diagrams re-

lated to discrete properties and to replace the components related to the
fairness conditions with some components related to real time condifions.
For the components related to real-time property, we adopt the structure of
timed-automata. Thus, in one direction, TPDs can be viewed as an extension
of predicate diagrams. In the other direction, we may say that predicate
diagrams are restricted TPDs. Particularly, when we eliminate all the com-
ponents of timed predicate diagrams that are related to real-time property,
then we have predicate diagrams without fairness conditions. We call such
a predicate diagram the uniimed version of a TPD. In the context of pa-
rameterized systems, we have shown that the {ordinary) predicate diagrams
can still be used for proving the properties that are related to the whole
processes. Whereas to prove the universal properties, i.e. the properties
that are reclated to one single process, we define a class of diagrams called
parameterized predicate diagrams or PPDs.

The verification of realtime systems and parameterized systems using
TPDs and PPDs are similar to the verification of discrete systems using pred-
icate diagrams.

Using the concept of abstract interpretation we have shown that our
diagrams can be generated semi-automatically,. We use the term ”semi-
automatically”, since the user’s intervention is still needed, in particular for
defining the abstraction functions and rewriting rules. We have developed
two prototype tools: PreDiaG, for the generation of predicate diagrams, and
parPreDiaG, for the generation of PPDs.

Some possible tracks for future work that come to wind are listed below.

e Hybrid systems. Basically, hybrid systems can be viewed as the
union of discrete and real-time systems. However, it is still needed to
study the special characteristic of this class of systems and to investi-
gate the extension or modification that shounld be done over predicate
disgrams.

o Completeness of TPDs and PPDs. In this work, we only consider
the completeness of predicate diagrams. The proof of the completeness

136

Bibliography

of TPDs and PPDs should be an interesting topic for a research. For
proving the completeness of TPDs, it is indicated, that we can use the
concept of timed automata and do the similar proof as we did In proving
the completeness of predicate diagrams. However, this indication is still
needed to be explored. Unfortunately, the proof of pris is still an open
question.

Tool support. For the practical application of our method tool sup-
port is essential. The tools we have implemented are prototypes that
are still needed to be improved, in particular in the aspect of graphical
user interface. We have shown that the generation of diagrams can be
done incrementally. We should or may refine the diagrams resulted by
our tools, until we get the desired diagrams. Thus, there is also a need
to have a good graphical editor that can support the refinement of the
diagrams. 1t is also desirable to have a translator from TLAY to MONA
syntax and to integrate these tools with an existing automatic theorem
prover in order to prove the proof obligations whenever needed.

Bibliography

[1} Martin Abadi and Leslie Lamport. An old-fashioned recipe for real
time. ACM Transactions on Programming Langueges and Systems,
16(5):1543-1571, September 1994.

[2] Martin Abadi and Stephan Merz. On TLA as a logic. In Manfred Broy,
editor, Deductive Program Design, NATO ASI series F, pages 235-272,
Springer-Verlag, Berlin, 1996.

[3} M.W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B. Liskov, G.P.
Mullery and F.B. Schoeider. Distributed Systems: Methods and tools
for specification. Volume 190 of Lecture Notes in Computer Science.
Springer-Verlag, 1985.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21:181-185, October 1985.

[5] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Technical Report 86-727, Cornell University, Ithaca, New York, Jan-
uary 1986.

[6] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. -

Distributed Computing 2, pp. 117-125, 1987.

[7) Rajeev Alur. Timed antomata. NATO ASI Summer School on Verifi-
cation of Digital and Hybrid Systems, 1998.

(8] Rajeev Alur, C. Courcoubetis and David L. Dill. Model-checking for
real-time systems. In Proceeding of the 5th Annual Symposium on Logic
in Computer Science, pp 414-425. IEEE Comgputer Society Press, 1990,

[9] Rajeev Alur and David L. Dill. A theory of timed antomata. Theoretical
Computer Science 126:183-235, 1994.

137

138 Bibliography

[10] R. Alur and T.A. Henzinger. A really temporal logic. In Proc. 30th
IEEE Symp. Found. of Comp. Sci., pages 164-169, 1989,

[11] R. Alur and T.A. Henvinger. Logics and models of real time: A survey.
In J.W. de Bakker, C. Huizing, W.P. de Roever and G. Rozember, ed-
itors, Proceedings of the REX Workshop "Real-Time: Theory in Prac-
tice”, volume 600 of Lecture Notes in Computer Science, pages 74-106.
Springer-Verlag, 1992,

(12] K. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters, Volume 15, pp.
307-309. 1936.

[13] Kai Baukus, Yassine Lakhnech and Karsten Stahl. Verifying Universal
Properties of Parameterized Networks. Technical Report TR-sT-00-4,
CAU Kiel, July, 2000. :

[14] Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl.
Abstracting WS1S Systems to Verify Parameterized Networks. In Pro-
ceeding of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2000), Volume
1785 of Lecture Notes in Computer Science, pages 188-203. Springer,
2000.

[15] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang and
Carsten Weise. New Generation of UrPAAL. Int. Workshop on Software
Tools for Technology Transfer. June 1998,

{16] S. Bensalemn, Y. Lakhnech and S. Owre. Computing abstractions of infi-
nite state systems automatically and compositionally. In Conference on
Computer Aided Verification {CAV-98), volume 1427 of Lecture Notes
in Computer Science, pages 319-331. Springer-Verlag, 1998.

[17] S. Bensalem, et.al. An overview of SAL, In C M Holloway, editor,
LFM 2000: 5 NASA Langley Formal Methods Workshop, pages 187-
196, 2000.

[18] M. Bozzano and G. Delzanno. Beyond Parameterized Verification. In
Proceedings of International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2002. Volume 2280
of Lecture Notes in Computer Science, pages 221-235. Springer, 2002.

Bibliography 139

[19] Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and
Tom4s Uribe. Diagram-based Formalisms for the Verification of Re-
active Systems. In CADE-13 Workshop on Visual Heasoning, New
Brunswick, NJ, July 1996.

[20] Anca Browne, Zohaer Manna and Henny B. Sipma. Generalized veri-
fication diagrams. In 15th Conference in the Foundations of Software
Technology and Theoretical Computer Science, volume 1026 of Leciure
Notes in Computer Science, pages 484-498, December, 1995.

[21] Anca Browne, Zohar Manna and Henny B. Sipma. Modular verification
diagrams. Technical report Computer Science Departement, Stanford
University, 1996.

[22] R.E. Bryant. Graph-based algorithmics for boolean function manipu-
lation. JEEE Transactions on Computers C-35(8):677-691.

[23] J.R. Blichi. Weak second-order arithmatic and finite automata. Z.
Math. Logik Grundl. Math., 6:66-92, 1960.

[24] J.R. Biichi. On a decision method in restricted second order arithmatic.
Proceedings of the International Congress on Logic, Method and Philys-
ophy in Science 1960, Stanford, CA, 1962. Stanford University Press,
1-12,

[25] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang.
Symbolic model checking:10%0 states and beyond. Information and
Computation 98(2):142-170.

[26] Dominique Cansell, Dominique Méry and Stephan Merz. Predicate di-
agrams for the verification of reactive systems. In 2™ Intl. Conf. on
Integrated Formal Methods (IFM 2000), vol. 1945 of Lectures Notes
in Computer Science, Dagstuhl, Germany, November 2000. Springer-
Verlag.

[27] EM. Clarke and E.A. Emerson. Characterizing correctness proper-
ties of parallel programs using fixpeoints. International Colloguim on
Automata, Languages and Programming. Vol. 85 of Lecture Nodes in
Computer Science, pp. 169-181, Springer-Verlag, July, 1980.

[28] E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. Workshop on Logic

140 Bibliography

of Programs, Yorktown Heights, NY. Vol. 131 of Lecture Nodes in Com-
puter Science, pp. 52-71, Springer-Verlag, 1981.

[29] E.M. Clarke, T. Filkorn and S. Jha. Exploiting symmetry in tempo-
ral logic model checking. In Courcoubetis, editor. Proceedings of the
5th Workshop on Computer-Aided Verification. Volume 693 of Lecture
Nodes in Computer Science, pp. 450-462. Springer, 1993.

[30] E.M. Clarke and O. Grumberg. Avoiding the state explosion problem
in temnporal logic model checking. Proceedings of the 6th annual ACM
Symposinm on Principles of Distributed Computlng, Pp. 294 303
Columbia, Canada; August 1987.

[31] E.M. Clarke, O. Grumberg and D.E. Long. Model checking and ab-
straction. ACM Transections on Programming Languages and Systems,
16(5), 1994.

[32] Edmund M. Clarke, Orna Grumberg and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[33] M.A. Colén and T.E. Uribe. Generating finite-state abstraction of re-
active systems using decision procedures. In Conference on Computer-
Aided Verification, volumne 1427 of Lecture Notes in Computer-Science,
pages 293-304. Springer-Verlag, 1998.

[34] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by constructiou or approximation
of fixpoints. In Jth ACM Symp. Princ. of Prog. Lang., pp. 238-252.
ACM Press, 1977.

[35] Raghia Cousot. Fondements de méthodes de preuve d’invarince et de
fatalité de programmes paralléles. PhD thesis. INPL, 1985.

[36] D. Dams. Abstract interpretation and partition refinement for model
checking. PhD thesis, Technical University of Eindhoven, 1996.

[37] D. Dams, R. Gerth and O. Grumberg. Abstract interpretation of reac-
tive systems: Abstractions preserving ACTL*, ECTL* and CTL*. In
Proceedings of the IFIP WG2.1/WG2.2/WG2.3 (PROCOMET). IFIP
Transactions, North-Holland/Elsevier, 1994.

(38] D. Dams, R. Gerth and O. Grumberg. A heuristic for the automatic
generation of ranking functions, In Proceedings of Workshop on Ad-
vances in Verification, pages 1-8. 2000.

Bibliography ‘ ‘ 141

(39}

[40)

[41]

42

[43]

[44]

Marco Daniele, Fausto Giunchiglia and Moshe Y. Vardi. Improved Au-
tomata Generation for Linear Temporal Logic. In Prec. 11th Intl. Con-

ference on Computer Aided Verification. Volume 1633 of Lecture Notes

in Computer. Science, pages 249-260. Springer, 1999.

S. Das, D.L. Dill and 8. Park. Experience with predicate abstractions.
In Proc. 11th Intl. Conference on Computer Aided Verification. Volume
1633 of Lecture Notes in Computer Science. pages 160-171, Springer,
1999,

L. de Alfaro and Zohar Manna. Temporal verification by diagram trans-
formations. In Proc. 8th International Conference on Computer Aided
Verification. Volume 1102 of Lecture Notes in Computer Science, pages
288.299. Springer, July, 1996.

D. Detlefts, (3, Nelson, and J. Saxe. Simplify: the ECS theorexﬂ prover.
Technical report, Systems Research Center, Digital Equipment Corpo-
ration, Palo Alto, CA, November 1996,

E.A. Emerson and A.P. Sistla. Symmetry and model checking. In Cour-
coubetis, editor. Proceedings of 5th Woikshop on Computer-Aided Ver-
ification, pp. 463-478. June/July 1993.

E.A. Emerson and K.S. Namjoshi. Automatic verification of param-

_ eterized synchronous systems. In_Proceeding of 8th Conference on

[45]

[46]

[47]

[48]

Computer-Aided Verification. Volume 1102 of Lecture Notes in Com-
puter Science, pp. 87-98. Springer, 1996.

E.A. Emerson and K.5. Namjoshi. Verification of a parameterized bus
arbitration protocol. Volume 1427 of Lecture Notes in Computer Sci-

ence, pp. 4562-463. Springer,1998.

Melvin Fitting. First-order logic and automated theorem proving.
Graduate Texts in Computer Science. Springer-Verlag. 1996,

Rober W. Floyd. Assigning meanings to programs. Proc. Symposm m
Applied Mathematics, 19:19-32, 1967.

Jean H. Gallier. Logic for Computer Science: Foundation of automatic

theorem proving. Harper & Row, Publisher, Inc. New York. 1986.

142 Bibliography

[49] Paul Gastin and Denis Oddoux. Fast LTL to Buchi Automata Trans-
lation. Proceedings of 13th Conference on Computer-Aided Verifica-
tion. Volume 2102 of Lecture Notes in Computer Science, pages 53-65.
Springer, 2001.

[50] S. German and A.P. Sistla. Reasoning about systems with many pro-
cesses. Journal of the ACM, Vol. 39, Number 3, July 1992.

{51] Rob QGerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. PSTV 1995:
3-18.

[52] P. Godefroid and D. Pirottin. Refining dependencies improves partial-
order verification methods. In Proceedings of the §th Conference on
Compuler-Aided Verification. Volume 697 of Lecture Notes in Com-
puter Science, pp. 438-449, Springer, 1993.

[53] S. Graf and H. Saidi. Construction of abstract state graphs with
PVS. In O. Grumberg, editor, Conference on Computer Aided Verifi-
cations. Volume 1254 of Lecture Notes in Computer-Science, pp. 72-83.
Springer-Verlag, 1997. June 1997, Haifa, Israel.

[54] K. Havelund and N. Shankar. Experiments in theorem proving and
model checking for protocol verification. FME. Volume 1051 of Lecture
Notes in Computer Science, pages 662-681. Springer, 1996.

[55] T. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Method-
ologies for Timed Transition Systems. Information and Computation,
112(2):273-337, 1994.

[56] C.A.R. Hoare. An axiomatic basis for computer programming: Com-
munications of the ACM, 12(10):576-580, 1969.

[57] G. Holzmann, The SPIN model checker. IEEE Trans. on software en-
gineering, 16(5):1512-1542. May 1997.

[58] Y. Kesten and A. Pnueli. Taming the Infinite: Verification of Infinite-
State Reactive Systems by Finitary Means. In Engineering Theories of
Software Construction, {NATQ) Science Series, Series I1I: Computer
and Systems Sciences, Vol. 180, pages 261-299, I0OS Press 2001.

[59] Y. Kesten, Z. Manna and A. Pnueli. Verification of Clocked and Hybrid
Systems. In G. Rozenberg and F.W. Vaandrager, editors, Lectures on

Bibliography , 143

Embedded Systems, volume 1494 of Lecture Notes in Computer Sci-
ence, pages 4-73. Springer-Verlag, 1998,

[60] E. Kindler. Sa.féty and Liveness Properties: A survey. Bulletin of the
European Association for Theoretical Computer Science, Vol. 53, pp.
268-272, 1994,

[61) N. Klarlund and A. Mgller. MONA Version 1.3 UserManual. BRICS,
1998.

[62] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-time Systems, 2(4):255-299, 1990,

[63] R. Koymans and W.-P. Roever. Examples of a real-time temporal logic
specifications. In B.D. Denvir, W.T. Harwood, M.IL. Jackson and M.J.
Wray, editors, The analysis of concurrent systems. Volume 207 of Lee-
ture Notes in Computer Science, pages 231-252. Springer-Verlag, 1985.

[64] R. Koymans, J. Vytopyl and W.-P. de Roever. Real-time programming
and asynchronous message passing. In Proc. 2nd ACM Symp. Princ.
of Dist. Comp.; pages 187-197,1983.

[65] Fred Kroger. Temporal logic of programs. EATCS Monographs on The-
oretical Computer Science, Vol. 8. Springer-Verlag. 1986.

[66] Robert P. Kurshan. Computer Aided Verification of Coordinating Pro-
cesses:The automata-theoretic approach. Princeton University Presss.
1994, -

[67] Leslic Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):435-455, 1974.

[68] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125-143, March,
1977.

[69] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3) : 872-923, May 1994.

[70] Leslie Lamport. TLA in Pictures. SRC Research Report 127, Digital
System Researh, California, 1994,

[71] Leslie Lamport. Introduction to TLA. SRC Technical Node 1994-001,
Digital System Research, California. December, 1994,

144 Bibliography

[72] Leslie Lamport. Specifying concurrent systems with TLA*. In Calcula-
tion Systerm Design. M. Broy and R. Steinbriiggen, editors. I0OS Press,
Ainsterdam, 1999.

[73] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools
or Hardware and Software Engineers. Addison-Wesley, 2002.

[74] C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani and S. Bensalem. Prop-
erty preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6(1}, 1995.

[75] Zohar Manna, Michael Colon, Bernd Finkbeiner, Henny Sipma and
Tomds Uribe. Abstraction and Modular Verification of Infinite-State
Reactive Systems. In Reguirements Targeting Software and Systems
Bngineering (RTSE). Volume 1526 of Lecture Notes in Computer-
Science, pp 273-292. Springer, 1993.

[76] Zohar Mamma and Amir Pnueli. A Hierarchy of Temporal Properties. In
Proc. ACM Symposium on Principles of Distributed Computing, 1990.

[77] Zohar Manna and Amir Pnueli. Models for reactivity. Acta Informatica,
30:609-678, 1993.

[78] Zohar Manna and Amir Pnueli. Clocked Transition Systems. Technical
Report STAN-CS-TR-96-1566, Dept. of Computer Science, Stanford
University. April, 1996.

[79] Zohar Manna and Amir Pnueli. Temporal verification diagrams. In
Proc. Intl. Symposium on Theoretical Aspects of Computer Software.
Volume 697 of Lecture Notes in Computer Science, pages 726-765.
Springer-Verlag, 1994.

[80} Zohar Manna and Amir Pnueli. Verification of parameterized programs.
In Specification and Validation Methods (E. Borger, ed.), Oxford Uni-
vergity Press, pp. 167-230, 1994.

[81] Zohar Manna and Amir Poueli. Temporal verification of reactive sys-
tems: safety, Springer-Verlag New York, Inc., New York, NY, 1995.

[82] K.L. McMillan. Symbolic model checking:an approach to the state ex-
plosion problem. Kluwer Academic, 1993.

Bibliography 145

[83] Stephan Merz. Logic-based analysis of reactive systems: hiding, com-
position and abstraction. Habilitationsschrift. Institut fiir Informatik.
Ludwig-Maximillians- Universitt, Munich Germany. December 2001.

[84] R. McNaughton. Testing and generating infinite sequence by a finite
automaton. Inform. Contr. 9, pages 521-530, 1966.

[85] J. Misra and K.M. Chandy. Parallel program design: a foundation.
Addison-Wesley Publishers, 1988.

[86] D.E. Muller. Infinite sequences and finite machines. In Proc. Jth IEEE
Symp: on Switching Circuit Theory and Logical Design, 99:3-16, 1963.

[87) C.E. Nugraheni. Prediag: A tool for the generation of predicate dia-
grams. In Proceeding of Student Research Forum, SOFSEM 2002, pp.
35-40, November 2002.

[88] J.S. Ostroff. Formal methods for the specification and design of real-
time safety critical systems. In Journal of Systems and Software, Vol.
18, Number 1, April 1992,

[89] J.S. Ostroff. Temporal logic of real-time systems. Advanced Software
Development Series. Research Studies Press (John Wiley & Sons),
Taunton, England, 1990.

[90] Susan Owicki and Leslie Lamport. Proving liveness properties of con-
current programs. ACM Transactions on Programming Languages and
Systems, 4(3):455-495, July 1982,

[91) PAX Tool:Parameterized systems Abstracted and eXplored. Avaiable
at http://www.informatik.uni~ kiel.de/ "kba/pax/.

[92] Doron Peled. Combining partial order reductions with on-the-fly
model-checking. In Dill, editor. Proceedings of the 1994 Workshop on
Computer-Aided Verification. Volume 818 of Lecture Notes in Com-
puter Science, pages 377-390. Springer-Verlag, 1994.

[93] Doron Peled. Software reliability methods. Texts in Computer Science.
Springer, 2001.

[94] Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Sym-
posium Foundation of Computer Science, pages 46-57, IEEY, Computer
Society Press, 1977.

146 Bibliography

[95] J.P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Cianzaglini and Ugo Montanari, edi-
tors, International Symposium on Programining. Volume 137 of Lecture
Notes in Computer Science, pp. 337-350. Springer-Verlag, 1981.

[96] M.O. Rabin. Decidability of second-order theoried and automata on in-
finite trees. Transactions of the American Mathematical Society, 141:1-
35, 1969.

[97] Fred B. Schneider. Decomposing properties into safety and liveness us-
. ing predicate logic. Technical Report 87-874, Departement of Computer
Science, Cornell University, Ithaca, New York, October 1987.

[98] H. Saidi and N. Shankar. Abstract and model check while you prove.
In N. Halbwachs and D. Peled, editors, Conference on Computer-Aided
Verification (CAV'99). Volume 1633 of Lecture Notes in Computer-
Science, pages 443-454, Trento, Italy, 1999, Springer-Verlag.

[99] Hermy B. Sipma. Diagram-based verification of discrete, reactive and
hybrid systems. PhD Thesis, Dept. of Computer Science, Standford
University, 1999.

[100] A.P. Sistla. On the characterization of safety and liveness properties
in temporal logic. In Proceeding of the 4th annual ACM Symposium
on Principles of Distributed Computing, pages 39-48, Minaki, Ontario,
Canada, August, 1985. ACM.

[101] Fabio Somenzi and Roderick Bloem. Efficient Biichi Automata from
LTL Formulae. In the 12th Conference on Computer Aided Verification
{CAV'00). Volume 1633 of Lecture Notes in Computer Science, pages
247-263. Springer Verlag, 2000.

[102] STERIA - Technolgies de 'Information, Aix-en-Provence (F). Atelier
B, Manual [Rilisateur, 1998. Version 3.5.

[103] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, Volume II:Formal Methods and Semarntics, pages
134-191. Elsevier Sciences Publishers B.V., 1990.

[104] TReX Examples: Fischer protocol in http://www_verimag. imag.fr/
“annichin/trex/demos/fischer.html.

Bibliography 147

[105] A. Valmari. A stubborn attack on state explosion. In Proceedings of the
2nd Workshop on Computer-Aided Verificetion. Volume 663 of Lecture
Notes in Computer Science, pages 260-175. Springer-Verlag, 1992,

[106] Pierre Wolper. Constructing automata from temporal logic formulas:
A tutorial. In Lectures on Formal Methods in Performance Analysis
(First EEF/Euro Summer School on Trends in Computer Science).
Volume 2090 of Lecture Notes in Computer Science, pages 261-277.
Springer-Verlag, July 2001.

[107] P. Wolper and V. Lovinfose. Verifying properties of large sets of pro-
cesses with network invariants. In J. Sifakis (ed), Automatic Verifice-
tion Methods for Finile State Systems. Volume 407 of Lecture Notes in
Computer Science, pages 68-80. Springer-Verlag, 1990.

{108] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceeding of the First Symposium on
Logic in Computer Science, pages 322-331. Cambridge, June 1986.

[109] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1-37, 1994.

[110] Sergic Yovine. Kronos: A verification tool for real-time. In Inter-
national Journal of Software Teols for Technology Transfer, Vol. 1,
Nber. 142, p.123-133, December 1997. Springer-Verlag Berlin Heidel-
berg 1997.

