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Abstract

This thesis focuses on fask specification and control for two co-
cpercting Tobot arms. A new task specification is designed to allow
a multi-robot system, in this case two cooperating industrizl robots,
to perform a cooperative task in a coordinated manner. The coor-
dinated moticn between the two robots is realized by feedforwarding
the velocity trajecteries of the first robot to the second robot, or vice
versa. Unfortunately, this technique leads to a non-practical solution
of having to specify tasks for both robots.

Therefore, another task specification is introduced by exploiting
the redundant properties of the multi-robot system. This specifica-
tion is an extension of an existing task specification for a single robot
arm. Redundancy is used mostly for executing tasks which consist of a
relative motion between both robots. This method is straightforward,
since the programmer only has tc focus on the contact and relative mo-
tion between the tool, held by one robot, and the manipulated object,
held by the other robot.

The utilization of redundant properties of the multi-robot system is
studied. Redundant manipulator theory is applied to both cooperating
robots so that during the task execution both robots stay within a
reachable and comfortable workspace, keeping them away from their
singular positions. Such an approach allows the multi-robot system to
perform a complete operation in-one step; even difficult tasks can be
accoruplished easily for which most single robot arms fail.

The above theory is demonstrated using simulation studies which
show very interesting results by utilizing redundancy of the multi-robot
system. Finally some experiments were performed using two industrial
robots, one of which was equipped with a six-dimensional force sen-
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sor. A comparison of some experimental results using a single robot
arm and two cooperating robot arms has been made and an effective
method for specifying the cooperative task based on redundancy is
proven.



Symbols and definitions

9,9,6:

Omins Omaz

the left-hand side is a shorthand notation for the ex-
pression on the right-hand side

difference between the desired and measured value
transformation from the right-hand side expression to
the lefi-hand side expression

desired value of variable or vector

measured value ¢f variable or vector

the half of rotation angle in determining relative po-
sition between two rcbots

rotation angle in determining direction of the KUKA-
160 IR w.r.t the KUKA-361 IR

a half rotation of an equivalent fifth axis (used in
spherical trigonometric computation)

generalized joint position

column vector of generalized joint positions and its
derivatives with respect to time:

61 6; é;

lower and upper joint hmits

vii



viii

a;, oy, di, 91‘ .

act :
axt, ayt,azt:

e :

ef :

£
fi

ji---j6:
k ke:

angular velocity three-vector:

link’s paramenters according to the Denavit-
Hartenberg convention

scalar (unbold lowercase)

column vector (bold lowercase)

actual value (subscript)

task frame orientations along coordinate axes of a ref-
erence frame (used in Comrade command file)

base frame of the 4-th robot

end-effector frame of the 7-th robot

end-effector frame (superscript, subscript)

force portion (subscript)

forward kinematics

inverse kinematics

feedforward (subscript)

force:

joint positions (used in Comrade command file)
constant (unbold lowercase)
moment (torque):

constant (unbold lowercase)
environment frame {subscript)
output (subscript)



PXGaA:
[px]:

1x

position portion (subscript)
posiiion vector:
Pz
P=| Py
Pz

cross product of three-vectors
matrix representing cross product with vector p:

0 -p. bpy
[pX] = Lz 0 “px
—py Pz 0
orientation vector:
Ty 1
r=1 T8
Ty

sensor frame (superscript, subscript)

Laplace transform variable (unbold lowercase)
time (unbold lowercase)

task frame (superscript, subscript)

total (subscript)

conirol commands, generated by the control law
velocity portion (subscript)

translational (or rectilinear) velocity three-vector:

arbitrary vector



T4, a-:da :i.:d .

xt,yt,zt:

manipulation variable:
T

desired end-effector position coordinates, and its
derivative with respect to time

task frame positions along coordinate axes of a refer-
ecce frame (used in Comrade command file)
distance between two robot base frames in XY-plane
matrix (bold uppercase)

transpose of matrix A)

pseude-inverse of matrix A

generalized force vector :

m
idendentity matrix
the Jacobian (matrix mapping joint velocities to
cartesian velocities):

inverse of the Jacobian

stiffness matrix of the compliant structure
force control gain

position control gain

tracking control gain

null space of the Jacobian matrix
potential function

potential function in joint space

potentia] function in cartesian space



o,
by A

XY, Z:

pat

potential function for avoiding singularity above robot
shoulder
range space of the Jacobian matrix
set of real numbers
manipulable space
redundant space
selection matrix
6 x 6 screw transformation matrix (transformation of
generalized velocity vector) from frame {0} to frame
{n}:
nV = ?;S OV:

05| AR PMXIIR ]
” O3x3 R |

4 x 4 homogeneous transformation matrix; maps co-
ordinates of three-vectors from reference frame {0} to -
reference frame {n}:

OR Op
OT: n n. s
i [les 1 }

ap is the position vector of {o}’s origin in reference
frame {n}.
generalized velocity vector:

v=[2]

coordinate axes of right-handed orthogonal reference
frame
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Chépter 1

Introduction

Robatics technology is becoming increasingly importart in indus-
try and incorporated into manufacturing systems. This is due to the
increased number of potential applications of robots on manufacturing
floors as well as in other areas. Robotic systems hold a great promise |
for assisting in many endeavors. For example, robotised automation
of complicated tasks is becoming a very important aspect in man-
ufacturing and in assembly operations. This tendency is recognized
by looking at the rapid development and extensive research on control
techniques which aim at utilizing robot manipulators in a more flexible
and optimal way.

Robot manipulators may be able to work perfectly in environments
which are not suitable for human beings. Hazardous, tedious, and
repetitive jobs can be accomplished safely and accurately using robot
manipulators. Robots are also capable of performing or (re)producing
exactly the same motions, and they can cope with inaccurate infor-
mation about the environment. These advantages increase the manu-
facturing flexibility, but at the same time they require more powerful
systems with greater adaptability to the variation of process condi-
tions. .

First-generation robots were only provided with position control,
as they were utilized mostly for ’pick and place’ operations. In practice
however, these operations are not representative for most applications,
and manipulators are very often constrained by their environment. In
such cases, contact between robot or manipulated object and environ-
ment has to be dealt with instead of to be avoided. Consequently,
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problems arise that are related to control stability, robustness, accu-
racy and so on.

Following very long research activities in this field, the robotics
research community has realized that more intelligent robot manipu-
lators must be developed. This thought triggered the researchers to
improve and increase the autonomy of the robots. This can be realized
for instance by meaus of applying a variety of sensors, such as force,
vision, tactile, ultra-sound, infra-red sensors etc. Hence, the robot in-
teracts with its environment in a more intimate fashion, similar as a
humar being who can use all kinds of sensors to capture and utilize
incoming information as much as possible. The more sensors that are
applied, the more autonomous is the robot.

The evolution of robotic operations began with very simple op-
erations, e.g. point-to-point handling operations, but later moved
towards complex operations where a variety of incoming stimuli are
utilized through sensor measurements. Such a complex operation can
be found in remote assembly operations using a multi-robot system
[72]. All incoming information should be processed in order to enable
the robots to work in a more intelligent way. Due to the use of sensors
and advanced controllers, the robot becomes more intelligent and au-
tonomous. It can cope with the errors of the positioning system, with
the incompleteness of the information about the environment, e.g. the
uncertainty of the geometric model of the environment, etc.

A typical example of a simple robot operation is transfer of an
object, from one position to an other on the shop floor. Trajectories
of the robot’s end-effector are not the most important aspect to be
controlled, but rather the initial and final position/orientation of the
end-effector. Transfer operations require high positioning accuracy,
and high-speed controllers for achieving short transfer times. An ordi-
nary robot controller, which is normally delivered with a commercial
robot, can not fulfil these requirements. Therefore, a lot of investiga-
tions related to these problems have been conducted.

Improvements of the performance of industrial robots have been
achieved in the works by Torfs and De Schutter [77, 78], and Deniard
et al. [27], especially in case of joint and/or link flexibilities. Their
experimental results show high-performance point-to-point operations
of a flexible robot arm, and good tracking and disturbance rejection
capabilities. These results indicate great potential improvements; e.g.



in spot welding operations, handling heavy payloads while moving at
high speeds, and so on. The problems arise when the payload is beyond
the robot capacity. The most logical solution is to utilize a robot with
higher capacity or utilize more than one robot manipulator.

An example of a more intelligent operation is the tracking of an
unknown contour. This operation is representative for applications
like polishing of complex surfaces, automatic glueing of car windows,
robotic deburring, etc. Tracking incorporates several control aspects
namely position control, force control, and tracking control in order to
adapt the orientation of the task frame to the actual tangential and
normal direction (fig. 1.1 a).

Usually, this task is performed by using a single robot arm while
the contoured object is mounted at a fixed position. This results in
a limited attainable space on the object, especially if the contour has
a 3-D circular shape. The robot cannot easily reach the object from
all directions. This constraint reduces the capabilities of the robot
manipulator. A promising sohition is to use a multi-robot system to
carry out this operation.

Figure 1.1 : Typical examples of advanced robotic applica-
‘ tions. Fig. a is tracking of a 3-D seam as in a
welding operation, and Fig. b is deburring of a

casting. '

Robotic deburring is an example of a complex cutting operation
(fig. 1.1 b). The robot controller has to adjust the tangential velocity
(feedrate) in the presence of a burr along the edges in order to main-



4 Introduction

tain a constant cutting force. The larger the burr size, the lower the
tangential velocity. As a result, a constant cutting force is realized.
This implies a constant normal force, since it is proportional to the
cutting force. To comply with the variety of the burr size, force con-
trol can .be applied, and some investigations have been conducted in
6, 49, 52, 89].

In many cases the shape of workpiece edges is usuzally not known
in advance; and therefore, the robot controller has to utilize the mea-
surable contact parameters, e.g. contact forces, possibly together with
a vision sensor. This information is used to control the tracking along
the edges. The performance of this process can largely be improved
by using two cooperating robot arms, since the robot holding the tool
can easily reach all sides of the workpiece. -

The evolution of robotic applications, together with their advan-
- tages and limitations outlined above, motivates research on the control
of multi robot systems, and becomes the main background of this dis-
sertation. More specifically, a control strategy has to be developed to
perform cooperative tasks using a multi robot system. In particular
two cooperating robots are studied. The work is based on a long tra-
dition of research and development of compliant robot motion, whick
has been successfully implemented on some industrial robots at the
PMA. division of the K.U. Leuven.

Maulti-robot systems should be able to cooperate to handle com-
mon loads and perform assembly operations, and should be largely
automonous. Consequently, coordination between the robots is essen-
tial. Control of cooperating robot arms will add an extra dimension
to robotic applications in the future. The success in this research
area will certainly -much improve robot utilization, increase the pro-
ductivity and efficiency of the manufacturing processes, and fulfil the
requirement for high safety operations in hazardous and dangerous
environments.

The advantages of multi robot systems are very useful when ma-
nipulating very complex objects, in the sense that the robot is able
to reach the manipulated object easily from all directions. It would
be very effective, for instance to deburr a complex shaped object from
different directions all in one step (fig. 1.2). Tracking of an unknown
contour would be easily performed without having to worry about joint
limits or singularity problems when a robot is controlled knowing the



Figure 1.2 : Application of a multi robot system, an example
of robotic deburring.

state of the other robot.

The numerous applications of multi robot systems may be classified
in two main groups. In the first category, all robot arms are in rigid
contact with the manipulated object. The object may or may not be
in contact with the environment. Hence, the tasks may be transfer of
a large common object or combination of transfer and force exertion
by the object on the environment. The second category, involves tasks
where each arm holds a separate object, either part and tool, or parts
to be assembled. In this work, the second category will mainly be
investigated.

The thesis is organized as follows: Chapter 2 gives an overview of
the background of the research work, and of the existing robot con-
trol techniques for single robot arms as well as for multi robot systems.
Chapter 3 describes task specification for cooperating robot arms. This
task specification is an extension of the ones introduced by Mason [60]
and enhanced by De Schutter [28]. As an extension, a specification is
developed to exploit the kinematic redundancy of the system in the
robot controlier. Chapter 4 treats the useful characteristic of cooper-
ating robot arms as a redundant manipulator. This chapter explains
in more detail the physical meaning and the use of the non-square Ja-
cobian matrix for performing cooperative tasks. Chapter 5 describes
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the control scheme implemented to control two industrial robots, in-
cluding the interface to the existing controller Comrade [33] and the
used programming techniques. Chapter 6 presents simulation and ex-
perimental results using two industrial robots the KUKA-361 IR and
the KUKA-160 IR. A comparison of different approaches for realizing
cooperative tasks is given. A general conclusion summarizes the main
results of this work.





