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Abstract 
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Under the democratic systems of government instilled in many sovereign states, 

the party in government maintains a constit.utional right to call an early election. 

While the constitution states that there is a ma.ximum period between elections, 

early elections are frequently called. 

This right to call an early election gives the government a control to maximize its 

remaining life in power. The optimal control for the government is found by locating 

an exercise boundary that indicates whether or not a premature election should 

be called. This problem draws upon t.he bod)' of literature on optimal stopping 

problems and stochastic control. 

Morgan Poll's two-party-preferred data are used to model the behaviour of the 

poll process and a mean reverting Stochastic Differential Equation (SDE) is fitted to 

these data. Parameters of this SD E are estimated using the Maximum Likelihood 

Estimation (MLE) lVlethocl. Analytic analysis of the SDE for the poll process is 

given and it will be proven that there is a unique solution to the SDE subject to 

some conditions. 

In the first layer, a discrete time model is developed by considering a: binary 

control for the government, viz. calling an early election or not. A comparison 

between a three-year and a four-year maximum term is also given. A condition 

when the early exercise option is removed, which leads to a fixed term government 

such as in the USA is also considered. In the next layer, the possibility for the 

government to use some control tools that are termed as 'boosts' to induce shocks 

to the opinion polls by making timely policy announcements or economic actions is 

also considered. These actions will improve the government's popularity and will 

have some impacts upon the early-election exercise boundary. An extension is also 

given by allowing the government to choose the size of its 'boosts' to maximize its 

expected remaining life in power. 
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In the next layer, a continuous time model for this election timing is developed 

by using a martirigaJe 'approach and Ito's Lemma which leads to a problem of solving 

a partial differential equation (PDE) along wit.h some boundary conditions. 

Another'condition considered is when the government can only call an elect.ion 

and the opposition can apply 'boosts' to raise it.s popularity or just to pull govern-,- -:: .. 

ment's popularit.y down. The ultimate case analysed is when both the government 

and t.he opposition can use 'boosts' and the government still has option to call an 

early election. In these two cases a game theory approach is employed and results 

are given in terms of the expected remaining life in power and the probability of 

calling and using 'boosts' at every time step and at certain level of popularity. 
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Chapter 1 

Introduction 

Under the democratic systems of government instilled in many sovereign states, 

the party in government maintains a constitutional right to call an early election . 

. While the constitution states that there is a ma.ximum period betwepn elections 

(typically 3 or 4 years), early elections are frequently called. For example, the 

Australian Constitution and Commonwealth Electoral Act 1918 give the Federal 

Government the right to call an early election, subject to approval by the monarch's 

representative (the Governor General). However, the presidential elections in the 

USA do not possess this property, enforcing a fixed period of four years between 

elections. 

This right to call an early election gives the government a control with which to 

optimize its objective of remaining in power for as long as possible. In some sense, 

the party in government has an option, which it can freely exercise. In this thesis, 

we want to devise the optimal control for the government by locating an exercise 

boundary, which indicates whether or not a premature election should be called. 

This problem draws upon the body of literature on optimal stopping problems and 

stochastic control. The problem can be compared with the determination of early 

exercise for American options in finance. 

In case an election is called at some time t, a mechanism is needed to gauge 

the likelihood of the government being returned to power. VVe have chosen to use 

popular opinion polls to measure the voting intentions of the public. Other factors 

may include an aggregation of expert opinion or bookmakers' dividends. The sam­

pling frequency of this data is not always regular, meaning that we must be careful 

with time series techniques and parameter estimation. Historical data is readily 

available from the Internet and some of them are presented on a fortnightly basis in 

1 

----.--.------~~--~-- ----- -------- - ... ----~-----



2 CHAPTER 1. INTRODUCTION 

newspapers. 

It is certainly true that opinion polls do not necessarily reflect the outcomes of 

an election (see [38J for the 1997 case in France). Noncompulsory voting, sampling 

and response errors and importantly the effect of an exaggerated majority (due to 

the common practice of regional representation) all impact on the probability of 

re-election. In a noncompulsory voting system, polled persons may not actually 

intend to vote. Probabilistic methods based on historical precedents encompass 

these situations in the models presented in this thesis. 

Voting in Australian federal elections is compulsory and follows a Majoritorian 

Alternative Vote system [84J. Voters register preferences for each candidate, and 

preferences are iteratively distributed until one party achieves the majority of (re­

ferred) preferences. This system is also known as "alternate vote" and is used in the 

House of Representatives and the lower house in every Australian State Parliament 

except for the Australian Capital Territory (ACT) Legislative Assembly and the 

Tasmanian House of Assembly where a variation of the Proportional Representa­

tion voting system known as Hare-Clark system is used ([6]). We concern ourselves 

with rules for the Australian Federal House of Representatives and use the associated 

poll and historical electoral data. 

The Commonwealth Electoral Act 1918 gives the timeline for each step in holding 

the election. It begins with the issue of the writs and ends with the return of the 

writs after the votes have been counted. A writ is a document commanding an 

electoral officer to hold an election. These steps begin after the expiry or dissolution 

of the House of Representatives and include: the issue of writs, the close ofrolls (the 

list of voters who are eligible to vote at an election), the close of nominations, the 

declaration of nominations, polling day and the return of writs. The new parliament 

must meet. wit.hin 30 days of the day appoint.ed for t.he return of writs (see Appendix 

B, [4J or [5J for details). 

The models in this thesis assume that opinion polls are driven by random 

processes. The announcement, distribution and dissemination of news (whether 

policy announcements or exogenous news items), drive t.he voting intentions of the 

public. Figures 1.1 and 1.2 show the voting intentions between the Coalition (Liberal 

and National Parties (LNP)) and the ALP (Australian Labor Party) and two-party­

preferred (LNP and ALP) voting intentions of the Australian public over the last 

decade or so, along with significant events. The significant events in these figures 

were taken from [63J, [66J and [91J. Some actions by the government seem to affect 
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the polls, for example the policy announcement of tax breaks. Exogenous events 

similarly have a significant impact on voting intentions, for example the World Trade 

Centre terrorist attacks. 

(LNP)-(ALP) (February 1960 - Oecember 2002) 

Figure 1.1: Voting Intentions with Election Dates and Significant Events 1960-2002 

We gradually build up the models in several layers of complexity. For all of the 

models, some fundamental assumptions are presumed: 

• The government maintains the right to call an election at any time. 

• The maximum time between elections is Y years (three years in the Australian 

House of Representatives). 

• A constant lead time T£ is enforced between announcing the election (issuing 

the writ) and holding the election. 

• The democratic electoral system of representative seats means that a party 

may receive more than 50% of the vote, but still lose the election (exaggerated 

majority). 

• The party system can be described in terms of two main parties. 

------_. __ .. _---
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0.2 . 

0.15 

0.' 

0.05 --

.<: 0-

-ll.05 

.0.":t=t:t:t1=t~t:tJ:t 
Figure 1.2: Two-Party-Preferred (LNP - ALP) with Significant Events 1993-2005 

We model the opmlOn polls as a mean reverting discrete Markov stochastic 

process (a finite number of popularity states in discrete time). A recursive for­

mulation for the expected remaining life in power is developed aud used to solve the 

election exercise boundary. The organization of the remainder of this thesis is the 

following. 

In Chapter 2, a literature review about models on election timing that have been 

developed so far is given. Mathematical preliminaries that are needed to develop the 

models are also given and include the basic theory of probability, stochastic process 

and Brownian motion, martingales, the Ito Integral and Ito's Formula. Also, the­

ory on Stochastic Differential Equations (SDEs) is introduced to understand some 

conditions related to the SD E model for the poll data. Dynamic programming and 

game theory are also needed in developing algorithms to deal with the models. Fi­

nally, the i'daximum Likelihood Estimation (MLE) method is introduced to estimate 

parameters in the mean reverting SDE and numerical methods in solving SDEs are 

also presented. 

The underlying process which consists of transition and winning probabilities, 

parameter estimation, sampling and response errors is described in Chapter 3. These 

terms will be used in developing the models in the. snbsequent chapters. A term 

structured volatility model is also introduced for the volatility coefficient in the 
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SDE model. The mean reverting SDE used in the models and its properties are 

analysed in terms of the existence and uniqueness of the solution. 

In Chapter 4, the first finite state and discrete time model of election timing is 

discussed. In that model, the only option owned by the government is to call or 

not to call an election. With this model, at every time step at any level of popula­

rity the government must decide whether to call an election or not by considering 

the maximum expected remaining life in power between calling and not calling an 

election. A comparison between the expected remaining life for a maximum term of 

three and four years is given along with the exercise boundary for both cases. The 

same problem is also considered by using a term structured volatility model and a 

situation where the early exercise option is removed, which represents the condition 

in countries with fixed period between elections is also investigated. 

In Chapter 5, an extension of the previous model is developed by considering 

the possibility for the government to use control tools termed 'boosts' to raise its 

popularity in the polls in addition to its option to call an early election. These 

control tools inclnde economic policy announcements such as tax cuts or budgets. 

However, in this chapter it is still ass)lmed that the opposition can do nothing. It is 

assumed that the government can only apply a boost of magnitude one at a time. 

Later in that chapter another situation is accommodated, that is the possibility for 

the government to choose the size of its boost between zero and one to maximize the 

expected remaining life in power by considering options to call an election and/or 

to use its boosts. 

A continuous time model for election timing is discussed in Chapter 6. Starting 

with a mean reverting SDE to describe the poll process, a martingale approach and 

Ito's Formula are used to derive a partial differential equation (PDE) with some 

boundary conditions. The expected remaining life and the exercise boundary are 

found by solving the PDE numerically using a Crank-Nicolson method. In this 

model, the government only has an option to call an election or not. Impacts on 

the expected remaining life and exercise boundary in relation to a three-year and a 

four-year maximum term, different values of the parameters of SDE and different 

functions for the probability of winning the election are also investigated. 

In Chapters 7 and 8, a game theory approach is employed to model the election 

timing. The election timing is considered as a zero-sum game between the govern­

ment and the opposition in terms of the expected remaining life in power. In Chapter 

7, a situation where the government can only call an election while the opposition 
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has a set of its policies to be delivered to the public that will pull the government's 

popularity down is considered. At every time step at any level of popularity the 

government should decide whether to call an election or not while the opposition 

can choose whether to apply its boosts or not. This game theory approach can be 

represented by a 2 x 2 payoff matrix. In this approach, results are given in terms 

of the expected remaining life in power and probabilities for the government and/or 

the opposition to apply their optimal strategies. 

Chapter 8 is an extension of Chapter 7 in which the government can call an 

election and use its boosts to raise its popularity while the opposition can also apply 

its boost to pull the government's popularity down. It is assumed that when the 

government and the opposition use their boosts at the same time, nothing happens 

in the polls. However, when only one party uses its boosts, the poll will move (up 

or down) in favour of whoever applies the boost. 

Chapter 9 contains conclusions and some directions for future research. 




