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Abstract

Biological systems are examples of complex systems, which consist of several in-
teracting components. Understanding the behaviour of such systems requires
a multidisciplinary approach that encompasses biology, mathematics, computer
science, physiscs and chemistry. New research areas are emerging as the result
of this multidisciplinarity, such as bioinformatics, systems biology and computa-
tional biology. Computer science plays an important role in the newly emerging
research areas by offerring techniques, algorithms, languages and software to solve
research problems efficiently. On the other hand, the efforts to solve these re-
search problems stimulate the development of new and better computer science
techniques, algorithms, languages and software.

This thesis describes our approach in modelling biological systems as a way to bet-
ter understand their complex behaviours. Our approach is based on the Calculi
of Looping Sequences, a class of formalisms originally developed to model bio-
logical systems involving cells and their membrane-based structures. We choose
Stochastic CLS and Spatial CLS, two variants of the calculi that support quan-
titative analysis of the model, and define an approach that support simulation,
statistical model-checking and visualisation as analysis techniques. Moreover, we
found out that this class of formalisms can be easily extended to model popu-
lation dynamics of animals, a kind of biological systems that does not involve
membrane-based structures.



Chapter 1

Introduction

Cell biology, also called cytology, is an academic discipline that studies cells.
In the past few decades, there has been an explosion of knowledge about the
contents of living cells. Biologists realise now that, despite of its microscopic size,
a cell is full of proteins. Each protein has specific function. Frequent interactions
between proteins also occur in cells. A great variety in protein structure, function
and interaction has made us realise that a cell is a very complex system. This
urged biologists to shift from the traditional reductionist paradigm, which studies
individual components of a living system separately, to the integrative paradigm,
which studies the living system as a whole [80]. Recently, a new field of biology
that studies complex interactions in biological systems has emerged: systems
biology.

Even with the abundant amount of knowledge about cell contents, biologists still
have a difficult job in understanding many cellular processes. In fact, a cellular
process is usually a combination of many chained and concurrent subprocesses,
which results in an emergent complex behaviour. Computer science can play
an important role by supporting biologists in understanding how such a high
complexity emerges out of interacting cellular processes. In particular, formal
methods and concurrency theory provide powerful techniques that can be ap-
plied to the modelling of cellular processes. Bray [21] suggested the need for a
novel language to model the universe of cells. Inspired by the success in using
computer graphics tools to visualise protein structure, he suggested to use the
same approach to understand cell universe. Church, Apagyi and Fisher [31] de-
scribed some important aspects and challenges in developing the language for

1
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biological models, which include:

• modelling and analysis capability of the language to handle complex and
diverse problems in biology,

• ability to support the communication of the models to other biologists,

• ease of use for biologists with limited computer science background,

• ability to deal and reason with incomplete information.

The increased use of computer science techniques to solve biological problems
introduces the new terminology in silico, as an analogy to the Latin phrases in
vivo and in vitro which are commonly used in biology. In vivo and in vitro refer to
experiments done in living organisms and outside of living organisms respectively,
while in silico refers to the use of computer to perform biological studies [80].

1.1 Applications of Formal Methods to Systems

Biology

Computer scientists find similarities between concurrency theory and systems
biology. Both disciplines deal with systems consisting of smaller elements inter-
acting with each other. Following this view, process algebras have been used to
model cells and interactions occurring inside cells. A cell consists of many smaller
elements that can be modelled as algebraic processes. The interactions between
these elements can be modelled as interactions between processes.

Degano and Priami [37] claimed that both systems biology and formal methods
for concurrency can cross-fertilize each other. Being based on sound and deep
mathematics, concurrency theories may offer solid ways to describe biological sys-
tems and safely reason upon them. On the other hand, systems biology studies
many complex biological phenomena. Modelling and reasoning about these com-
plex phenomena may require techniques that are more efficient and reliable than
existing techniques. It is expected that the effort to understand biological mech-
anisms in terms of computer technology will possibly lead to new techniques that
are more robust, efficient and reliable to model and analyse complex systems.
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Regev, Silverman and Shapiro [92] observe that a formalism to model cells should
fulfill four goals:

• provide a unifying view of both the molecular data and the dynamic be-
haviour it underlies,

• formally represent data to be used for computer execution and analysis,

• facilitate comparative studies of structures, dynamics and functions within
and between species,

• be scalable and modularised to higher levels of organisations.

In the attempt to achieve these goals, several formalisms have been proposed
for modelling biological phenomena, such as Petri Nets [89, 90, 53], Brane Cal-
culi [23, 36], P Systems [84, 83], the π-Calculus [30, 88, 100, 101], CCS-R [35],
which is a variant of Milner’s CCS (Calculus of Communicating Systems), and
Calculi of Looping Sequences [76]. Petri Nets, CCS and the π-Calculus are gen-
eral formalisms used to model concurrent processes, thus they were not originally
designed to model cellular systems. Brane Calculi and Calculi of Looping Se-
quences are new classes of formalisms developed specifically for modelling cells.
P Systems, the class of formalisms inspired by membrane systems in Cell Biology,
were not initially intended to model cellular systems. In P Systems, the compu-
tational nature of various features of membranes is explored and investigated in
order to be used in a model of computation. However P Systems have been later
also used to model cells as computing processes.

Reddy, Liebman and Mavrovouniotis were the first to apply formal methods in
modelling biological systems. In their work [90, 89], they proposed a method for
qualitative analysis of biochemical pathways using Petri Nets. They used several
Petri Net properties, such as boundedness, liveness, and invariants to identify
properties in the biological system. For example, the accumulation of some toxic
intermediates in a biological system can be identified using the boundedness of
a Petri Net. Barjis and Barjis also used Petri Nets to model protein production
process in details and showed how to convert the model into an executable pro-
gram [11]. A limitation of these approaches is that the use of ordinary Petri Nets
for modelling biological systems is limited to the analysis of qualitative properties
of the systems.
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In order to overcome this limitation, extended versions of Petri Nets were also
applied in Systems Biology. The first extension was Functional Petri Nets. In
Functional Petri Nets it is possible to assign to Petri Nets arcs equations us-
ing marking variables instead of natural numbers as in standard Petri Nets [53].
Hofestädt and Thelen [59] used Functional Petri Nets to do quantitative mod-
elling of biochemical networks. They extended the model developed by Reddy,
Liebman and Mavrovouniotis by allowing dynamic representation of concentra-
tion of metabolites participating in a chemical reaction.

Hardy and Robillard surveyed the use of three other extensions of Petri Nets
in modelling biological systems: Coloured Petri Nets (CPN), Hybrid Petri Nets
(HPN) and Stochastic Petri Nets (SPN) [53]. Goss and Peccoud [50, 51] modelled
quantitative aspects of molecular interactions. Using a Stochastic Petri Nets tool
called UltraSAN, they were able to model and perform quantitative analysis of
two case studies: protein synthesis and plasmid ColE1 replication.

Matsuno, Doi, Nagasaki and Miyano [73, 77, 78] proposed a method for mod-
elling biological systems using HPN. HPN extend Petri Nets by allowing places
and transitions to have real numbers as values of tokens. HPN enable modelling
complex and more realistic biological systems. Real numbers in places and tran-
sitions can be used to represent various features. For instance, they can be used
to represent concentrations and speed of reactions [73]. Just like SPN, HPN
support probabilistic analysis of the system. The choice between SPN and HPN
depends on the nature of the system to be modelled. If the model deals with
a big number of molecules, HPN is usually preferred since it enables using real
numbers to represent big numbers. If the model deals with a small number of
molecules, SPN is usually preferred.

CPN also support quantitative modelling and analysis of biological systems. Gen-
rich, Küffner and Voss [45] use colours of tokens to represent time-related infor-
mation needed for simulation of the model. Voss, Heiner and Koch use colours
to distinguish the origin of molecules in a place [102]. Marking the origin of
molecules is useful in the completeness and feasibility analysis of the model.

Overall, Petri Nets and their extensions support modelling chemical reactions in
biological systems as well as qualitative and quantitative analysis. Petri Nets are
equipped with graphical representations, which make them favourable to be used
for modelling and analysis of biological systems. However no classes of Petri Nets
support modelling the structural details of biological systems.
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Regev, Silverman and Shapiro were the first to use the π-calculus to model bi-
ological systems [92, 93]. The π-calculus enables modelling interaction between
processes using complementary channels, and communicating names of channels
via channels. This feature allows network structure to change with interaction
(mobility). Regev, Silverman and Shapiro developed a piece of software called
PiFCP to simulate their model. They also suggested the use of bisimulation as
a way to check equivalence between two processes. In the context of cell biology,
this facilitates comparative studies of several biological systems. Comparison of
similar pathways is the first step to study cell evolution.

Priami, Regev, Silverman and Shapiro used stochastic π-calculus to model bio-
logical systems [87]. Their approach supports qualitative modelling of biological
systems. They also developed a piece of software called BioSPI to simulate the
model.

Formalisms that originated from concurrency theory are capable of modelling
activities inside cells (chemical reactions), but are not capable to model com-
partments. A molecule or an object in a cell can do its function only when it
is on the right location. Compartments play an essential role by organising bio-
logical systems hierarchically and also introduce the notion of object’s location.
This was first realised by Regev, Panina, Silverman, Cardelli and Shapiro [91].
They developed the π-calculus into BioAmbients in order to model compartments.
BioAmbients models both membrane-bound compartments, in which boundaries
are clearly defined, and molecular compartments, in which the boundaries are
not clearly defined.

Cardelli was the first to define specific formalisms for describing cellular systems.
He named such a class of formalisms Brane Calculi [23]. In Brane Calculi, cellu-
lar systems are modelled as membrane systems that can perform computations.
Computations are performed on membranes rather than inside them. A mem-
brane system may consist of several membranes. Computations on membranes
are defined using actions.

The simplest version of Brane Calculi is the PEP Calculus. In the PEP Calculus,
there are only three kinds of actions: Phago, Exo and Pino. Phago (phagocytosis
or literally ”cellular process of eating”) and Pino (pinocytosis or ”cell drinking”)
are endocytosis, cellular processes of engulfing solid particles by the cell mem-
brane. In Phago the process engulfs one external membrane while in Pino no
external membrane is engulfed. Exo (exocytosis) is the reverse process of endo-
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cytosis, where the membrane ejects objects to the extracellular environment.

Cardelli also extended the PEP Calculus by adding more actions to be performed
on membranes, such as Mate, Bud ad Drip [23]. He also defined molecules which
may interact with the membranes, and defined complexation of molecules to
model protein complexes. Other extensions in his work are communications be-
tween membranes, choice operations and atonal transport. Danos and Pradalier
also extended PEP Calculus by replacing actions with directed actions [36]. They
defined two kinds of directed actions: inward and outward actions.

P Systems were first defined by Păun [82] as a model of computation inspired
by membrane systems. In P Systems, computation occurs inside the membrane.
The membrane only functions as a boundary, so that the system can be modelled
hierarchically. The computation performed by the system is modelled using a set
of rewrite rules.

More recently P Systems have been also used for modelling biological systems.
For example, Bernardini [15] and Bianco [17] in their theses showed how to use
variants of P Systems to model biological systems. Bernardini’s work focuses on
two main issues in P Systems, exploiting a variant of P Systems called Popula-
tion P Systems, and investigating bio-inspired communication mechanisms in P
Systems. He showed his approach by modelling quorum-sensing in bacteria, a
communication strategy among many bacteria to coordinate gene expression ac-
cording to the local density of bacteria producing signalling molecules. Bianco’s
work focuses on dynamics of signal transduction networks. Perez-Jimenez and
Romero-Campero modelled the epidermal growth factor receptor signalling cas-
cade [85]. P Systems models are always analysed through simulation, followed
by a comparison of the in silico result with the in vitro result.

There are also works on comparing Brane Calculi and P Systems. Busi and
Zandron compared Brane Calculi and P Systems [22] by modelling the LDL
cholesterol degradation pathway in both Brane Calculi and P Systems. Cardelli
and Păun [24] showed the expressiveness of P Systems by emulating Brane Calculi
actions Pino, Exo, Bud and Mate using P Systems. Krishna extended this work
by adding actions Phago and Drip to the emulation of Brane Calculi using P
Systems [65].

In our work, we will mainly deal with Calculi of Looping Sequences. In his
thesis [76], Milazzo has defined the Calculus of Looping Sequences (CLS) and
four additional variants of it. He has used these formalisms to model several
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biological phenomena. Milazzo has also contributed to develop a Stochastic CLS
simulator [96]. He has used the simulator to simulate gene regulation in E. coli
and compared the result of the simulation with the real experiment.

Biologists already know that biological systems can be modelled as stochastic sys-
tems. Parameter values of the model are taken from the results of in vitro/in vivo
experiments. Therefore simulation can be performed to analyse the model quan-
titatively. Another kind of analysis that can be done is model-checking. Model-
checking is useful for both qualitative and quantitative analysis. There have been
several attempts to apply model-checking to biological systems. Chabrier-Rivier,
Chiaverini, Danos, Fages and Schachter developed a formalism to model biolog-
ical phenomena [27] and proposed the use of Computation Tree Logic (CTL) to
query the model. Later Fages, Soliman and Chabrier-Rivier [40] developed this
modelling formalism into a modelling environment called Biochemical Abstract
Machine (BIOCHAM). They showed two examples of modelling biological sys-
tems, the mammalian cell cycle control and the regulation of gene expression
[26, 27]. They also showed some possible properties about the model and how
to model-check such properties. Bernot, Comet, Richard and Guespin formally
modelled biological regulatory networks using graphs and analysed CTL proper-
ties of the model using the SMV model-checker [16].

David Harel et al. [63, 95] used statecharts and LSC (Live Sequence Charts) to
model and verify biological models. Harel proposed the task of fully modelling
a muti-cellular animal as a grand challenge in computing [54]. He proposed to
model Caenorhabditis elegans nematode worm (C. elegans) as grand challenge
case study. C. elegans is very well-defined in terms of anatomy and genetics. In
his long-term proposal, Harel suggested to employ formal verification technique
to compute ways to satisfy a desired scenario. Harel et al. started with modelling
C. elegans vulval development, which occurs during egg development [63, 64]. By
combining the state-based approach of statecharts and scenario-based approach
in LSC, they performed in silico experiments with their model and compared the
result with data observed from in vivo experiments [95, 41, 42].

Bodei, Bracciali and Chiarugi [18] offered a simple formalism to model-check
causality in biological systems. Their formalism was implemented in Prolog, using
Horn-clauses to represent chemical reactions in biological systems. They modelled
the metabolic network of E. coli K-12 genes. They simulated gene knock-out and
compared the result with the in vitro experiment. Gene knock-out is important
to find out which genes are essential to produce a specific metabolite. Some
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genes are even essential for the life and death of the cell. Since Bodei, Bracciali
and Chiarugi only focus on causality, many details are abstracted away in their
approach.

To perform quantitative model-checking on a system Kwiatkowska, Norman and
Parker developed a probabilistic model checker called PRISM [67]. In PRISM,
models can be defined by using either discrete-time Markov chains (DTMCs),
Markov decision processes (MDP) or continuous-time Markov chains (DTMCs).
PRISM has been successfully used to model and analyse several biological case
studies: FGF (Fibroblast Growth Factor) signalling pathway [57], 3-way biochem-
ical oscillator [6], MAPK cascade [66] and mRNA translation [19]. Although all
these case studies show the success of modelling and analysing quantitative as-
pects of biological systems, there is one common limitation of the approach. In
order to avoid the state explosion problem, the state space is reduced by limiting
the number of molecular species or the number of molecules for each molecular
species involved in the system.

1.2 Modelling Biological Systems at Different

Levels of Representation

Most approaches described in Section 1.1 use texts and plots to show results.
Although texts and plots provide detailed information on specific aspects of the
analysed biological system, they are often inadequate when the aim is to acquire
global knowledge about the high-level organisation and dynamics of the biological
system. For example, in most experiments the analyst can only vary molecular
concentrations in the environment and within cells, whereas the aim of the ex-
periment or simulation may be to observe the resultant behaviour of cells or even
the whole organ or organism. Such high-level behaviours can be better described
through two or three dimensional visualisation/animation rather than using texts
and plots.

The work on visualisation of biological systems started in 1968, when Aristid Lin-
denmayer defined his famous formal model of plant development which is called
L-systems (or Lindenmayer systems) [70, 71]. L-systems have successfully been
used to model the growth of parts of a plant, without dealing with the molecular
interactions triggering the growth. Only interactions between the plants cells and
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external factors in the environment are taken into account [52, 86, 44].

Slepchenko, Schaff, Macara and Loew developed a tool to visualise cellular sys-
tems according to a model of the system at the molecular level [98]. This tool,
which is called Virtual Cell, is based on a deterministic numerical simulation of
the model, which is defined by using differential equations.

David Harel and his group developed an approach in modelling at different levels
of representation [55]. They used object oriented approach and defined the cell as
the basic building block of their approach. Their approach uses scenario to define
system behaviour and uses animation on a 2-dimensional grid [2]. Scenarios define
cell behaviour related with interactions between molecules in the environment
and their receptors on cell membranes. Another interesting application of their
approach is the modelling of pancreatic organogenesis [97]. In this application
they show how molecular interactions affect cell growth and, in the end, affect
the growth of mammalian pancreas. A three dimensional visualisation is used to
visualise the pancreatic organogenesis process.

In both Virtual Cell and the works of Harel and his group visualisation of the
higher level behaviour of a biological system is triggered by the behaviour of the
system at the lower level. This kind of research brings in silico biology closer to
in vivo and in vitro biology. However, those two approaches are deterministic,
whereas real biological systems are stochastic.

Michel, Spicher and Giavitto use rule-based programming language MGS to
model and simulate the λ phage genetic switch [75]. They present a multilevel
model of the system; a molecular level defined by using built-in Gillespie’s al-
gorithm (which is a stochastic algorithm) and a population of cells level defined
by using GBF (Group Based Field) and Delaunay topological collections. The
result of a simulation can be printed into a file, which later can be visualised by
using another tool.

1.3 Modelling Population Dynamics of Biologi-

cal Systems

Research in population biology aims to study factors that affect the dynamics of a
population of individuals and how to regulate the population size. Mathematical
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models are often used as tools to predict population dynamics. Population dy-
namics modelling and analysis are usually important for the following purposes:

• controlling the spread of a disease,

• conservation of endangered species,

• predicting the economical impacts of the population dynamics.

Diseases like Malaria and Dengue are rapidly spread by mosquitoes. Female
mosquitoes need blood to oviposit and humans are the main source of blood for
these mosquitoes. A few models of mosquito population have been proposed [1,
68]. Some works have also connected the population models to disease spread [60,
43].

In the case of insect population models scientists have to deal with more uncer-
tainties than in the models of bigger animals. For instance, mosquitoes usually
spend their immature stages in water and field data about their immature stages
are not available. The result of simulating these models can only be compared
with real data for adult mosquitoes.

Armstrong and his group monitored the population of some birds in New Zealand
and proposed a population model based on the data [5, 4, 3]. By comparing the
simulation result of their model with the real data they calibrate the parameters of
the model. They considered factors such as population density, age, and gender.
Jenouvrier, Barbraud, Cazelles and Weimerskirch proposed a model of seabird
population by considering the stages in the bird’s development and climate factors
in the model [61].

Economy also affects population of some animals. Many animal products are
traded legally or illegally. Some research have started to model animal population
by considering economical factors. Examples of this kind of research are modelling
the effect of legalising markets to the population of some animals [58, 94].

All approaches described above are deterministic.There are also some approaches
that model nondeterminism in the systems using formal methods. Barbuti et al.
[10] extend P Systems with features typical of timed automata with the purpose
of describing periodic environmental events such as changes of seasons. Cardona
et al proposed a formal modelling approach based on P systems and applied
it to model the population dynamics of bearded vulture in the Pyrenees [25].
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McCaig, Norman and Shankland [74] present a process algebraic approach to the
modelling of population dynamics.

1.4 Contributions of the Thesis

This thesis focuses on the use of Calculi of Looping Sequences to quantitatively
model and analyse biological systems. Simulation is still used in our approach,
but we also propose the use of model checking [14]. In Chapter 3, to deal with
the large size of the state space we propose the use of statistical model checking.
This requires a compact representation of system states and the definition of an
operational semantics for Stochastic CLS based on such compact representation.

The second contribution of this thesis is the definition of an approach based on
Spatial CLS to model a biological system at different levels of representation [13].
This approach, presented in Chapter 4, is stochastic and supports visualisation
of the system. In this way we provide a modelling approach that makes the
presentation of experimental results close to what we observe with in vitro and
in vivo experiments.

In Chapter 5, we propose an approach to model population dynamics of animals.
We define a general approach to deal with environmental factors, which are not
controlled by the simulation algorithm but affect the rates of events in the model.
To handle this new context we extend Stochastic CLS with a list of external events
modelling environmental factors. In this way we can use real environmental data
such as temperature and rainfall to calibrate the parameters in our model and
then compare the simulation results with real data [12].




