BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan yang didapatkan dari skripsi adalah sebagai berikut:

- 1. Jumlah *strands* ukuran 0.6 inch yang dibutuhkan pada model jembatan prategang *box girder* dengan metode *Movable Scaffold System* adalah sebanyak 1180 *strands* untuk mutu beton 40 MPa, sebanyak 826 *strands* untuk mutu beton 80 MPa dan sebanyak 560 *strands* untuk mutu beton 120 MPa.
- 2. Pengurangan jumlah *strands* terjadi seiring dengan kenaikan mutu beton namun tidak linier. Dari analisis skripsi ini diperoleh bahwa terjadi pengurangan jumlah *strands* sebesar 30 % dari mutu beton 40 MPa ke mutu beton 80 MPa dan pengurangan jumlah *strands* sebesar 52,54% dari mutu beton 40 MPa ke mutu beton 120 MPa, serta terjadi pengurangan jumlah *strands* sebesar 32,20% dari mutu beton 80 MPa ke mutu beton 120 MPa.
- 3. Pada tegangan serat atas dan bawah, beban yang paling mempengaruhi desain *strands* adalah beban pada masa servis yaitu Beban SIDL, Beban Garis Terpusat (BGT), dan Beban Terbagi Rata (BTR).
- 4. Dengan analisis masa konstruksi di setiap tahap konstruksi, tegangantegangan yang terjadi pada umur beton tertentu dapat diperiksa apakah memenuhi syarat tegangan izin.

5.2 Saran

 Pemodelan jembatan prategang box girder ini menggunakan perhitungan yang konservatif sehingga output yang dihasilkan belum optimum pada bagian tertentu.Sebaiknya dilakukan perhitungan lebih lanjut kebutuhan tendon pada masing-masing segmen sehingga yang dihasilkan output yang optimum.

2. Metode konstruksi jembatan sangat mempengaruhi pemakaian jumlah tendon/*strands* yang diperlukan pada masa konstruksi maupun masa layan.

DAFTAR PUSTAKA

- 2015."Segmental Bridge" (Online), (http://en.vsl.cz/segmental-bridges/2-span-by-span-erection-with-launching-gantry/, diakses pada tanggal 4 September 2016).
- American Association of State Highway and Transportation Official (AASHTO). 2012: *AASHTO LRFD 2012 Bridge Design Spesification 6th Edition*. United States of America.
- Larasati, Dhya Ayu. (2014). "Struktur Jembatan" (Online), (https://www.scribd.com/doc/241956877/STRUKTUR-JEMBATAN, diakses pada tanggal 4 September 2016)
- Tany, Nalendra. (1998). Design of Modern Highway Bridges. Los Angeles:Mc.Graw Hill.
- RSNI-T-12-200X. (2004). *Perencanaan Struktur Beton untuk Jembatan*. Jakarta:Badan Standarisasi Nasional.
- SNI 1725-2016. (2016). *Standar Pembebanan untuk Jembatan*. Jakarta:Badan Standarisasi Nasional.