SETTLEMENT RATE FUNCTION DEVELOPMENT BASED ON FIELD INSTRUMENTATION TEST AND LABORATORY TEST

THESIS

By:

Tabitha Aldrianita 8102101035

ADVISOR : Prof. Paulus Pramono Rahardjo, Ir., MSCE., Ph.D.

> CO-ADVISOR: Martin Wijaya, S.T., Ph.D.

MAGISTER OF CIVIL ENGINEERING FACULTY OF ENGINEERING PARAHYANGAN CATHOLIC UNIVERSITY BANDUNG AUGUST 2024

PAGE OF APPROVAL

SETTLEMENT RATE FUNCTION DEVELOPMENT BASED ON FIELD INSTRUMENTATION TEST AND LABORATORY TEST

By: Tabitha Aldrianita 8102101035

Approved for Thesis Defense on: Wednesday, August 21, 2024

ADVISOR :

monha

Prof. Paulus Pramono Rahardjo, Ir., MSCE., Ph.D.

CO-ADVISOR:

Martin Wijaya, S.T., Ph.D.

MAGISTER OF CIVIL ENGINEERING FACULTY OF ENGINEERING PARAHYANGAN CATHOLIC UNIVERSITY BANDUNG AUGUST 2024

PERNYATAAN BEBAS PLAGIARISME

Yang bertandatangan di bawah ini, saya dengan data diri sebagai berikut:

Nama : Tabitha Aldrianita

NPM : 8102101035

Program Studi : Teknik Sipil, Fakultas Teknik, Universitas Katolik Parahyangan

Menyatakan bahwa tesis dengan judul:

Settlement Rate Function Development Based on Field Instrumentation Test and Laboratory Test

adalah benar-benar karya saya sendiri di bawah bimbingan dosen pembimbing. Saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan yang berlaku dalam masyarakat keilmuan. Apabila di kemudian hari ditemukan adanya pelanggaran terhadap etika keilmuan karya saya, atau jika ada tuntutan formal atau non formal dari pihak lain berkaitan dengan keaslian karya saya ini, saya siap menanggung segala risiko, akibat, dan/atau sanksi yang dijatuhkan kepada saya, termasuk pembatalan gelar akademik yang saya peroleh dari Universitas Katolik Parahyangan.

> Dinyatakan: di Bandung Tanggal: 20 Agustus 2024

TABITHA ALDRIANITA

PENGEMBANGAN SETTLEMENT RATE FUNCTION BERDASARKAN INSTRUMENTASI LAPANGAN DAN UJI LABORATORIUM

Tabitha Aldrianita (NPM: 8102101035) Pembimbing: Prof. Paulus Pramono Rahardjo, Ir., MSCE., Ph.D. Ko-Pembimbing: Martin Wijaya, S.T., Ph.D. Magister Teknik Sipil Bandung Agustus 2024

ABSTRAK

Pada penelitian ini dikembangkan metode Settlement Rate Function (SRF) yang memperhitungkan konsolidasi primer dan kompresi sekunder, dimana pada beberapa jenis tanah lunak memiliki kompresi sekunder yang signfikan. Pengembangan metode SRF dilakukan dengan mengobservasi karakteristik dan perilaku penurunan tanah untuk menghasilkan prediksi penurunan tanah yang akurat. Hasil perhitungan SRF kemudian dibandingkan dengan prediksi penurunan tanah berdasarkan metode Asaoka dan metode konsolidasi satu dimensi oleh Terzaghi. Hasil penelitian menunjukkan SRF dapat memprediksi penurunan tanah cukup akurat dengan menggunakan interval waktu 20 hari dan memisahkan fase konsolidasi primer dan kompresi sekunder. Untuk tanah lunak yang memiliki kompresi sekunder yang signifikan, metode SRF dapat memprediksi penurunan tanah secara akurat selama kompresi sekunder telah muncul saat pengambilan data tanah dan *rate* penurunan tanah tidak fluktuatif.

Kata Kunci: Settlement Rate Function, tanah lunak, kompresi sekunder, settlement plate, interval waktu.

SETTLEMENT RATE FUNCTION DEVELOPMENT BASED ON FIELD INSTRUMENTATION TEST AND LABORATORY TEST

Tabitha Aldrianita (NPM: 8102101035) Advisor: Prof. Paulus Pramono Rahardjo, Ir., MSCE., Ph.D. Co-Advisor: Martin Wijaya, S.T., Ph.D. Magister of Civil Engineering Bandung August 2024

ABSTRACT

In this study, the Settlement Rate Function (SRF) method was developed to account for both primary consolidation and secondary compression, where some types of soft soils exhibit significant secondary compression. The development of the SRF method involved observing the characteristics and behavior of soil settlement to produce accurate predictions of soil settlement. The SRF calculations were then compared with predictions of soil settlement based on the Asaoka method and the one-dimensional consolidation method by Terzaghi. The research results indicate that SRF can predict soil settlement accurately using a 20-day interval and effectively separates the phases of primary consolidation and secondary compression. For soft soils with significant secondary compression, the SRF method can predict soil settlement accurately, provided that secondary compression has occurred by the time soil data is collected and the rate of soil settlement is not fluctuating.

Keywords: Settlement Rate Function, soft soil, secondary compression, settlement plate, time interval.

ACKNOWLEDGMENT

I am profoundly grateful to those who have made this journey possible. I would like to express my gratitude to Professor Rahardjo for your expert guidance and unwavering support have been pivotal in shaping this work. Your patience and insightful feedback have been invaluable throughout this process.

My sincere thanks also go to Dr. Wijaya for their thoughtful advice and encouragement, which have significantly contributed to the development of my research. Your perspective and expertise have been greatly appreciated.

I would like to extend my appreciation to Dr. Widjaja, Dr. Lim, Dr. Gouw, Dr. Madutujuh, Dr. Djawardi, Dr. Sadisun, and Dr. Rinda, whose knowledge and instruction have profoundly influenced my academic and professional growth. Your mentorship has enriched my understanding and broadened my horizons.

Lastly, to my family, your steadfast support and belief in me have been my greatest source of strength. Your sacrifices and encouragement have been the bedrock of my perseverance.

Thank you all for your exceptional contributions and support.

Bandung, August 20, 2024

Author

Tabitha

TABLE OF CONTENTS

ACKNOW	LEDGEMENT	i
TABLE O	F CONTENTS	ii
LIST OF N	NOTATIONS AND ABBREVATIONS	iv
LIST OF F	TIGURES	vi
LIST OF 1	CABLES	viii
APPENDI	X	ix
СНАРТЕВ	R 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	1
1.3	Research Hypothesis	2
1.4	Research Purpose and Objectives	2
1.5	Research Scopes	3
1.6	Thesis Outlines	3
1.7	Flow Diagram	4
СНАРТЕБ	2 LITERATURE REVIEW	5
2.1	Embankment on Soft Soil	5
2.2	Soil Settlement	5
2.2.1	Primary Consolidation	6
2.2.2	Secondary Compression	8
2.3	One-Dimensional Consolidation Theory	9
2.4	Asaoka's Method	13
2.5	Prior Research : Settlement Rate Function	14
2.6	Soil Parameter	15
2.7	Cv Determination	18
СНАРТЕВ	R 3 METHODOLOGY	21
3.1	Data Gathering	21
3.2	Standard Penetration Test (SPT)	22
3.3	Settlement Plate	23

REFERENCES		50	
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS		48	
	4.10	Cv Determination Results	45
	4.9	Effects of Data Utilization on Settlement Prediction	43
	4.8	Settlement Rate Function	39
	4.7	Asaoka's Method	36
	4.6	Extended Data	34
	4.5	Original Data	33
	4.4	Settlement Data Setup	32
	4.3	One-dimensional Consolidation Calculation	32
	4.2	Soil Classification	30
	4.1	Project Description	29
CHAPTER 4 DATA ANALYSIS		29	
	3.5	Analysis Procedures	26
	3.4	Laboratory Test Results Interpretation	25

LIST OF NOTATIONS AND ABBREVATIONS

Notations List

- $\Delta \sigma_z$: Effective stress
- $\Delta \sigma_z$: Total stress
- Δu : Excess pore pressure
- Δt : Time interval
- ϵ_z : Vertical strain
- ϵ_p : Volumetric strain
- β : Beta
- σ : Stress
- σ_z ' : Effective vertical stress
- \checkmark : Density
- φ : Friction angle
- c : Cohesion
- Cu : Undrained cohesion
- C_{α} : Secondary compression index
- C_c : Compression index
- Cr : Recompression index
- C_v : Coefficient of consolidation
- e : Void ratio
- fs : Sleeve friction
- h : Pressure head
- H_{dr} : Drainage path
- I : Hydraulic gradient
- k : Permeability

- m_v : Modulus of volume compressibility
- N : SPT blows
- R : Settlement rate
- S : Settlement
- S_c : Primary consolidation
- $S_{c(s)}$: Secondary compression
- S_f : Final settlement
- t : Time
- t_p : End of primary consolidation
- u : Pore water pressure
- qc : Cone tip resistance
- V : Volume
- v : velocity

Abbreviations List

- BH : Borehole
- CPTu : Cone Penetration Test
- EOP : End of Primary Consolidation
- SP : Settlement Plate
- SPT : Standard Penetration Test
- SRF : Settlement Rate Function

LIST OF FIGURES

Figure 1.1 Flow Diagram	4
Figure 2.1 Effects of Effective Vertical Stress Changes (Budhu, 2018)	7
Figure 2.2 Primary Consolidation & Secondary Compression (Budhu, 2018)	8
Figure 2.3 Three-Phase of Creep (Braja M. Das, 2019)	9
Figure 2. 4 Illustration of Soil Element (Budhu, 2018)	11
Figure 2.6 Asaoka's Settlement Prediction Method (Quang Dong Pham, 2022)	13
Figure 2.7 Compression Index Illustration	17
Figure 3.1 Standard Penetration Test (Budhu, 2018)	22
Figure 3.2 CPTu Instrument (Budhu, 2018)	23
Figure 3.3 Settlement Plate (MnDOT Geotechnical and Pavement Manual)	24
Figure 3.4 AMTS (Source : Website Geo Instruments)	24
Figure 3.5 e-log t space (example)	25
Figure 3.6 Ca Interpolation Example	26
Figure 4.1 Soil Test Position	29
Figure 4.2 SPT & CPTu Results	30
Figure 4.3 Laboratory Test Results	31
Figure 4.4 Settlement vs Time Curve	33
Figure 4.5 S _{n+1} vs S _n Curve	34
Figure 4.6 Extrapolation Data Procedure	35
Figure 4.7 SP Extended Data	35
Figure 4.8 Extended Data Two-Phase & Three-Phase	36

Figure 4.9 Asaoka's Method & SRF Predicted Sf	41
Figure 4.10 SP14 Rate vs t Curve	41
Figure 4.11 PC SRF and SC SRF Comparison	43
Figure 4.12 Minimum Time Interval Trial	43
Figure 4.13 Predicted Sf Based on Time Interval	44
Figure 4.14 Comparisons of Sf Based on U% Curve	45
Figure 4.15 C _v Value Evaluation	46
Figure 4.16 C _v Value from Various Depth	47
Figure 4. 17 S vs t Curve Comparisons Based on Cv	47

LIST OF TABLES

Table 2. 1 Soil Density & Friction Angle Correlation (Whilliam T., Whitman,	
Robert V. (1962))	15
Table 2. 2 Typical Values for Void Ratio (Murphy, 2002)	16
Table 2.3 Shear Strength Typical Value	16
Table 2.4 Typical Value for Cc (Holtz and Kovacs, 1981)	17
Table 3.1 Ca Value Based on Applied Load (example)	26
Table 4.1 Soil Classification and Design Parameters	31
Table 4.2 1D Consolidation Predicted Settlement	32
Table 4.3 Components of S_{n+1} vs S_n Curve Formula Summary (1)	37
Table 4.4 Components of S_{n+1} vs S_n Curve Formula Summary (2)	37
Table 4.5 Predicted Sf Summary (Asaoka's Method)	37
Table 4.6 Settlement & U% at Start of Secondary Compression	38
Table 4.7 Components of Settlement Rate Function Summary	39
Table 4.8 Integral of SRF Results Summary	39
Table 4.9 SRF Predicted Settlement Comparisons	42
Table 4.10 Predicted Sf Based on U%	45

Table 2. 1 Soil Density & Friction Angle Correlation (Whilliam T., Whitman,

APPENDIX

Appendix 1. Ca Determination	52
Appendix 2. Extended Data Procedure	54
Appendix 3. Asaoka's Method for Extended Data	58
Appendix 4. Settlement Rate vs Time Curve	62
Appendix 5. Settlement Rate vs Time Curve (Separated)	63

CHAPTER 1

INTRODUCTION

1.1 Background

The first one-dimensional consolidation theory was stated by Terzaghi, which is the function of settlement versus time. Until this day, Terzaghi's consolidation theory is fervently used in the academic and practical fields.

According to this theory, settlement happens vertically and secondary compression begins after primary consolidation is complete. However, prior research has shown that secondary compression takes place before the end of primary consolidation. Further, it was discovered that some types of soils could have significant secondary compression and can be eminently impactful in long term conditions. Thus, this thesis attempts to predict soil settlements accurately from the field instrumentation test data that takes account of primary consolidation and secondary compression. The method that will be used and developed is Settlement Rate Function and will be compared with Asaoka's method and onedimensional consolidation method by Terzaghi. Evaluation of the effects of soil condition upon field data retrieving and data utilization impact on soil settlement prediction will be conducted in order to predict more accurately.

1.2 Problem Statement

Terzaghi's consolidation theory assumes that secondary compression starts after primary consolidation ends. In reality, secondary compression could happen concurrently with primary consolidation. Secondary compression could also be quite significant in some cases. Thus, Settlement prediction methods that consider primary consolidation and secondary compression accurately are needed to obtain better prediction results.

1.3 Research Hypothesis

The Settlement Rate Function can be developed from the settlement rate versus time curve which has variables that take primary consolidation and secondary compression into account. The length of the settlement observation duration input determines the settlement prediction produced by the Settlement Rate Function, and the minimum length of observation time required to produce reliable results can be determined.

1.4 Research Purpose and Objectives

The objectives of this research is:

- 1. Analyze the settlement behavior based on the field instrumentation data.
- Evaluate the effects of soil condition upon retrieving and data utilization impact on settlement predictions.
- 3. Determine the final settlement prediction using Settlement Rate Function.
- Compare the predicted result with one-dimensional consolidation method and Asaoka's method.

The purpose of this research is to determine soil settlement calculation method that takes account of secondary compression and predicts settlement accurately.

1.5 Research Scopes

The scopes of this research are:

- Conduct literature studies related to soil settlement theories and prior settlement prediction researches.
- Develop Settlement Rate Function for fine-grained soil in Gelora Bandung Lautan Api Stadium.
- Compare predicted Settlement Rate Function result with one-dimensional consolidation method and Asaoka's method result.

1.6 Thesis Outlines

1. CHAPTER 1 Introduction

This chapter comprises background, problem statement, research hypothesis, research purpose and objectives, research scopes, and thesis outline.

2. CHAPTER 2 Literature Review

This chapter points out theories about embankment, soil characteristic and parameter, soil consolidation, and settlement calculation procedure.

3. CHAPTER 3 Methodology

This chapter defines the analysis procedures and Settlement Rate Function development.

4. CHAPTER 4 Data Analysis

This chapter describes soil data analysis procedures, settlement calculation procedures and results using Terzaghi's one dimensional consolidation theory and Settlement Rate Function method development. 5. CHAPTER 5 Conclusions

This chapter defines the conclusion based on the analysis and hypothesis testing results and as well as author's recommendations for supporting future research.

1.7 Flow Diagram

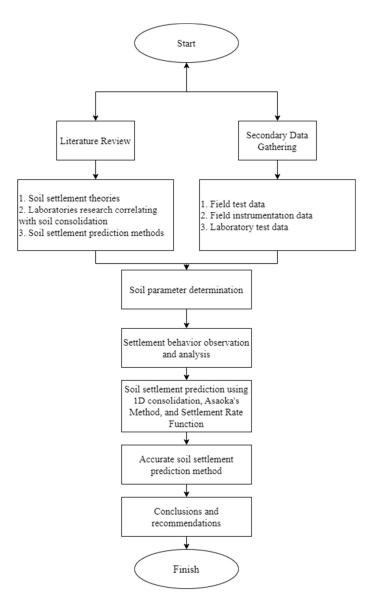


Figure 1.1 Flow Diagram