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Chapter 1 

Introduction 

This literature study is a part of my study at University of Twente. The pur­
pose of my literature study is to explore information in the area of time series 
model and some curve fitting, and also to learn how to search and to select the 
relevant literature. This literature report will be used as basic lmowledge before 
I am doing my final project at Centraal Bedieningssysteem Distributiepompstat­
tions ( CBD) Gemeentewaterleidingen Amsterdam . 

The huge amount of measurement from 120 channel is available (more or less 
3456000 measurement per day) at CBD, from this heap information we want 
to learn the way the measurements vary overtime and to construct the time 
patterns of past period without storing all the original measurements. · My final 
project deal with storing the time patterns in an efficient way and controlling 
the whole process of the waterworks. Base on this fact, time series model and 
curve fitting are chosen as a topic of my literature study. 

My report is organized in the following way . First part of my report deal 
with the literature search process that I do and its result. The second part deal 
with my literature survey on time series and curve fitting. In this part I try to 
give an overview on the time series models (in general), linear stationary mod­
els, model identification, parameter estimation, diagnostic checking, regression 
model with time series error, some smoothing and curve fitting methods. 
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Part I 

Report on Literature Search 
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Chapter 2 

Literature Search 

2.1 Search Plan 

In order to find references that are related to my topic, some aspect should be 
consider. This section deals with everything that we have to consider such as: 

• where we have to start 

• where to find 

• what criteria are used 

• how to select appropriate one. 

2.1.1 Starting Point 

When my supervisor formulated this literature study, he gave me a book [34] to 
study on subject of univariate Box-Jenkins methods. After studied this books, 
I could be more specific in searching for references which related to the topic 
time series model. I determine some keyword which related to time series after 
studied this book. By using these book as initial references, I started searching 
from various sources. 

2.1.2 Important Sources 

There are many important sources for searching literature in the field of math­
ematics. Some of them are listed below. 

• On-line Public Catalogue of University Library Twente 

• The Netherlands Central Catalogue 

• On-line Contents 

• WebCat 
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• Carl Uncover 

• Math SciNet 

• Science Citation Index 

Since November 1998, Twente University Library introduces the new database, 
is called Picarta. Because of time constraint, I could not try this database. 

as: 
There are also many possibilities to search literature from other sources such 

• Alta vista (www.altavista.digital.com) and Yahoo (www.yahoo.com) search 
engine. 

• References from the articles 

2.1.3 Selection Criteria 

I have to perform selection criteria for keeping that my searching is not become 
wide and still on the right track. The following keywords are used to find articles 
that related to my purpose: 

• time series 

• autoregressive 

• moving average 

• spline 

• smoothing 

• regression 

In order to select which articles to be considered whether it is relevant to my 
literature study or not, I select some articles whose title relevant to my topic, 
after that I read their summaries to make sure that articles relevant. If I think 
that articles is relevant then I make a copy of it. The last step is classification, 
whether the articles is become my reference or not. 

2.2 Search Process and Result 

2.2.1 On-line Public Catalogue (OPC) 

The On-line Public catalogue Twente University Library contains all books, 
journals and audiovisual media available in the collections of the library. This 
catalogue can be searched from University Library or accessed via internet 
(http:\ \www.ub.utwente.nl). We can use term: title word, author name, cor­
poration (publisher), author-name-conference, systematic code, key words (in 
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Dutch), ISBN (for books), ISSN (for periodicals) , year of publication or com­
bination of those term. 

Base on title word criteria, the following result were obtained by OPC: 

Title word Search Results Bibliography 
Time series 117 [5),[17],[18],[37), [38] 
Autoregressive 3 -
Moving Average 0 -
Spline? 41 [7),[8] 
Smoothing? 33 [8], 
Regression? 1 [35],[37),[43) 

Base on those result, 11 books are added to my bibliography. Next, I will 
search using author criteria that found in the previous search, because sometimes 
there are books that can not be covered by title criteria. 

The result of searching base on the author criteria : 

Author Search Result Author Search Result 
Pankratz, Andrew 2 Pesaran, M. 3 
Eubank, Randall 2 Dierckx 1 
Box, G.E.P. 5 Seber,G. 3 
Harvey, Andrew 4 Pandit, S 1 

Base on those result, [34) is added. This book related to my topic but did 
not find in the first searching by title criteria. 

I also tried to find other books from other resources outside Twente Univer­
sity Library, such as NCC. 

2.2.2 Netherlands Central Catalogue (NCC) 

The Netherlands Central Catalogue NCC contains bibliographic references and · 
the locations of approximately 12 million books and almost 500,000 periodicals 
in more than 400 libraries in The Netherlands. The database is updated directly 
and continually. The NCC database is connected to the Interlibrary Loan Sys­
tem IBL. So, it is possible to requests for photocopies of articles or r.equests."for 
books from other library using IBL account~ ..._:._ __ _ 

The following result were generate by NCC: 

Title word Search Results 
Time series 703 
Autoregressive 87 
Moving Average 29 
Spline? 168 
Smooth? 432 
Regression? 795 
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From those result, there are no books added to my bibliography. 
For searching the articles which related to my topic, snowball method and 

science citation index are easiest ones if we have found an article as starting 
point. If a starting article were not found, MathSciNet will be come more helpful 
than other resources that I mentioned in subsection (2.1.2), because MathSciNet 
provided summary of article. 

2.2.3 MathSciNet 

MathSciNet is the searchable Web database providing access to Mathemati­
cal Reviews and Current Mathematical Publications from 1940 to the present 
produced by the American Mathematical Society. Current Mathematical Publi­
cations is a subject index of bibliographic data for recent and forthcoming pub­
lications. Most items are later reviewed in Mathematical Reviews. All items in 
Mathematical Reviews appear first in Current Mathematical Publications. 

Current Mathematical Publications data is added daily. Mathematical Re­
views data is added each month when the printed issue is complete. The Math­
ematical Reviews record for an item with a review replaces the Current Math­
ematical Publications record for that item. The database is available on the 
internet site. The rnirror sites are located in Bielefeld (Germany), Bonn (Ger­
many), Strasbourg (France), Houston TX (USA), Providence RI (USA). This 
site http://ams.mathematik.uni-bielefeld.de/ is the nearest mirror site to En­
schede). 

Because most of articles in MathSciNet have summary, I used this database 
to perform complete and specific searched. Most of articles in my bibliography 
was found by MathSciN et. 

The following results were generated by MathSciNet: 
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Title word Search Results 
Time series* 2014 
Time series* AND Identification* 63 
Time series* AND Estimate* 348 
Time series* AND Check* 11 
Time series* AND Select* 27 
Autoregressive* 1168 
Autoregressive* AND Identification* 19 
Autoregressive* AND Estimat* 413 
Autoregressive* AND Check* 1 
Autoregressive* AND Select* 25 
Moving Average* 514 
Moving Average* AND Identification* 16 
Moving Average* AND Estimat* 135 
Moving Average* AND check* 0 
Moving Average* AND select* 0 
Autocorrelat* 551 
Autocorrelat* AND regression* 73 
Spline* 5017 
Smoothing* & Spline* 327 
Spline* & Regression* 77 
Dynamic* & Regression* 36 

According to those result, some articles are added to my bibliography. [3], 
[4], [10] , [14], [21], [24], [26], [28], [30], [31], [46] is relevant to time series model, 
[1] , [2], [11], [13], [16], [19], [22], [32], [33], (36], [39], (41], [42], [47], (48], (49], [50] 
is relevant to regression with time series error and [6] , (9], (23], [45] is related to 
spline smoothing. · 

2.2.4 On-line Cont~nts (OLC) 

On-line Contents OLC contains references to all articles that appear in over 
12.500 current periodicl:lls. The database contains mostly academic journals, 
but also general and non-specialist periodicals are included. These journals can 
be found in the collections of Dutch libraries. The database is built on the basis 
of the tables of contents of each separate issue. Since September 1992, the OLC 
updated daily and annually more than 2 million article references are added. 
The OLC-database is connected to the Interlibrary Loan System IBL in The 
Netherlands. So, it is possible to request a copy of articles from other Dutch 
libraries using IBL account. The OLC-database is connected to the Interlibrary 
Loan System IBL in The Netherlands. So, it is possible to request a copy of 
articles from other Dutch libraries using IBL account. 

The following result were searched by OLC : 
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Title word Search Results 
Time series 2712 
Autoregressive 645 
Moving Average 189 
Spline AND regression 24 
Smoothing AND Spline 55 
Regression AND smoothing 24 

2.2.5 UnCover 

UnCover is a database of current article information taken from over 17,000 
multidisciplinary journals. UnCover contains brief descriptive information for 
over 7,000,000 articles which have appeared since Fall 1988. The database is 
available on the internet site http://uncweb.carl.org. We can choose search type: 
keyword, author or journal title and combine that with years of publication. 

The following result were generated by UnCover : 

Keyword Search Results 
Time series 3538 
Autoregressive 732 
Moving Average 249 
Regression AND Spline 24 
Smoothing AND Spline 53 
Smoothing AND Regression 32 

2.2.6 WebCAT 

WebCAT is the central catalogue of the WebDOC-project, in which via Internet 
full text access is provided to a large collection electronic documents by libraries 
from The Netherlands, Germany and the US and international publishers. Sev­
eral search keys can be used, including full word searching on the titles and the 
abstracts. 

The following results were generated by WEbCAT: 

Title word Search Results 
Time series* 12 
Autoregressive* 1 
Moving Average* 0 
Spline* 9 
Smoothing* AND Spline* 2 

2.2. 7 Science Citation Index (SCI) 

The science citation index is provided by the Institute for Scientific Information. 
It indexes 5300 major journals across 164 disciplines and covering 2000 more 
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journals. The information from the articles is sorted to the following register 
: Source Index, Permutation Index, Corporate Index, Citation Index. The 
citation index contains all cited articles in a specific period. With the SCI it 
is possible to search for articles which have specific articles as reference. In 
the TW library there is SCI in CD-ROM format which contains articles from 
January 1990 up to June 1998. 

The following result were generate by SCI: 

Title word Search Results 
Time series* 1274 
Autoregressive* 353 
Moving Average* 103 
Spline* 537 
Smoothing* AND Spline* 15 

2.2.8 Snowball Methods 

As I have mention before that snowball method and science citation index are 
easiest ones if we have found an article as starting point. I started from [48], 
then from the reference of that article, I got 8 relevant articles. 

2.2.9 Search Engine 

Sometimes from internet search engine we can find preprint or technical report. 
I found articles [12], [27], [29], [51], [52], [53], [54], [55], [56] by altavista internet 
search engine. 

2.3 Selection Result 

· The list of selected books and articles can be found at the end of this report in 
reference. 
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Chapter 3 

Linear Stationary Time 
Series Model 

3.1 Introduction-Box Jenkins Model 

we consider about time series data. Time series data refers to observations on 
a variable that occur in time series sequence. Time series analysis refers to 
any kind of analysis involving time series data, or it used to explain behavior 
of time series data using only past observations on the variable in question. 
I only discuss time series analysis with emphasis on univariate analysis and 
Box-Jenkins model. 

3.1.1 Requirement for Box-Jenkins model 

• Short-term forecasting 

The Box-Jenkins model are suited to short-term forecasting model and 
to forecasting of series containing seasonal variation and shifting seasonal 
pattern. 

• Data type 

This model deals only with data measured at equally spaced and discrete 
time intervals. 

• Sample size 

Construction of an adequate ARJMA model requires a minimum 50 sample 
size. A large sample size is desirable when seasonal variation is present 
[5]. 

• Stationary series 

This method applies only to stationary time series. A stationary time 
series has mean, variance and autocorrelation function that are essentially 
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Forecast 

Stage 1: Identification 
Choose one or more ARIMA 

models as candidates. 

Stage 2: Estimation 
Estimate the parameters of the 
mn<le:l(~) r.hn!.e:n 11t id""" 1 

Stage 3: Diagnostic Checking 
Check the candidate model(s) 

for adequacy. 

Figure 3.1: Box-Jenkins iterative approach 

constant through time. Often, a nonstationary mean can be made sta­
tionary series with appropriate trasformations. The most common type of 
nonstationarity occurs when the mean of the realization change over time, 
for this type can frequently be rendered stationary by differencing. 

3.1.2 Modelling procedure 

Box-Jenkin in [34] propose a practical procedure for finding a good model. The 
procedure is summarized in figure 3.1. 

Stage 1 : Identification 

At this stage we tentatively select one or more ARJMA 1 models by looking at 
two graphs derived from the available data. This graph are called an estimated 
autocorrelation function (acf) and an estimated partial autocorrelation function 
(pacf). We choose a model whose associated theoretical acf and pacf look like 
the estimated acf and pacf calculated from data. 

1 ARIMA stands for Autoregressive Integrated Moving Average. 

14 



Stage 2 : Estimation 

At this stage we obtain estimates of the parameters for the ARJMA model 
tentatively chosen at identification stage. 

Stage 3 : Diagnostic checking 

At the diagnostic-checking stage we perform tests to see if the estimated model 
is statistically adequate. If it is not satisfactory then we return to identification 
stage to select another models. · 

3.1.3 The Advantages of Box Jenkins Model 

The Box-Jenkins approach has advantages compare to other traditional single­
series [34] . 

• the concept associated with Box-Jenkins model · are derived from a solid 
foundation of mathematical theory 

• Box and Jenkins have developed a strategy for choosing one or more ap­
propriate models out of larger family ARJMA models. 

• An appropriate ARJMA model produces optimal univariate fore case be:­
cause this model has sm~er mean squares forecast error. 

3.2 Linear Stationary Models 

This section deals with definition and properties of stationary: autoregres­
sive models, moving average model, and mixed autoregressive-moving average 
model. 

3.2.1 Autoregressive Process 

,Auto Regressive Model (AR(p)). 

Definition 1 [25}An autoregressive process of order p is a process that satisfies 
a difference equation 

where Zt = Zt - µ is the deviation of the process from some origin, ¢1 , ¢2 , . . . , ¢p E 
R and at is stationary white noise with mean µ and variance a 2 • {The at term 
in an ARIMA process usually assumed to be normally, identically and indepen­
dently distributed random variables with a mean of zero and a constant vari­
ance). 
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The process is called autoregressive because the value of the process at time 
t beside on a pure random component depends on the p intermediate past values 
of the process itself. 

Equation (3.1) can be written in backshift operator (BZt = Zt-1 ) as 

at = Zt - ¢fZt- 1 - ¢2Zt- 2 - ... - ¢pZt- p 
2 t -(1 - ¢ 1B - ¢2 B - ... - ¢pB - P)Zt 

¢(B)Zt 

and also in term of previous a's 

- - 1 Zt = ¢ (B)at. 

Stationary Conditions 

(3.2) 

(3.3) 

The Stationary requirement ensures that we can obtain useful estimates of the 
mean, variance and acf from sample. If the process mean were different each 
time period, we could not obtain useful estimates since we typically have only 
one observation available per time period. 

The set of parameter ¢ 1, ¢2, .. ., ¢p of AR(p) process (3.1) must satisfy certain 
conditions for the process to be stationary. These conditions are summarized in 
following table. 

Summary of sta tionary conditions for AR coefficients 

Model Type Stationary Condition 
AR(l) 1¢1 1< 1 
AR(2) 1¢21 < 1, ¢1 + ¢2 < 1, ¢2 - ¢1 < 1 

For illustration, the AR(l) process 

(1 - ¢ 1B)Zt = at 

may be written 

(3.4) 

(3.5) 

where 

'lj;(B) = (1 - ¢ 1 B) - 1 = Lcp{B1 (3.6) 
j = O 
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If 1¢11 < 1 then (1 - ¢ 1B)- 1 is equivalent to convergent geometric series. 
So, 1¢ 11 < 1 is a condition for the process to be stationary . 

The stationary condition become complicated when p > 2. When p > 2 we 
can at least check the necessary (but not sufficient) stationarity condition: 

Theoretical acf and pacf for AR process 

The theoretical autocorrelation function and partial autocorrelation function 
for AR(p) process will be discussed in this subsection. The idea in autocorrela­
tion analysis is to calculate a correlation coefficient for each set of ordered pair 
(ztzt+k). Because we are finding the correlation between sets of numbers that 
are part of the same series, the resulting statistic is called an autocorrelation 
coefficient. 

Consider the AR(p) process (3.1) and multiply by Zt-k , to obtain 

Zt-kZt = ¢ 1Zt - kZt- 1 + ¢ 2Zt-kZt-2 + ... + ¢pZt-kZt-p + Zt-kat (3.7) 

on taking expected values in (3.7), we obtain autocovariances function 

'Yk = tPi'Yk- 1 + ¢2'Yk- 2 + ... + tPp'Yk-p , k > 0 (3.8) 

'Yo tP1'Y- 1 + ¢2'Y-2 + ... + tPp'Y- p +a~ (3.9) 

on dividing (3.8) by 'Yo, we obtain autocorrelation function 

Pk = ¢1Pk-1 + ¢2Pk-1 + ··· + tPpPk- 1 · , k > 0 (3.10) 

and by dividing(3.8) by 'Yo = a~ and substituting 'Yk = 'Y- k , we obtain variance 
in following form 

(3.11) 

For example AR(l) process : 

Pk tP1Pk- 1 , k > 0 

Po 1 

or 

k 
Pk= ¢1 , k ~ 0 

the autocorrelation function decays exponentially to zero when ¢ 1 is positive, 
but decays exponentially to zero and oscillates in sign when ¢ 1 negative. 
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The partial autocorrelation function (pad) is a tool which exploit the fact 
that wherea.5 an AR(p) process has an autocorrelation function which is infinite 
in extend. Denote that </>kj is the jth coefficient in an autoregressive process of 
order k. From (3.10) , the </>kj satisfy the set equations 

Pi = </>k1Pj-1 + ··· + </>k(k-1)Pi-k+l + </>kkPi - k , j = 1, 2, ... , k 

or write it in Yule-Walker equation [5] 

where 

P1 
1 

Pk- 2 

Pk- 1 j 
Pk- 2 

1 

Estimated acf and pacf for AR process 

Estimated acf [34] : 

n - k 
I: zt zt+k 
t = l 

rk =----

E (zt)2 
t= l 

(3.12) 

(3.13) 

(3.14) 

[5] suggest that the maximum number (k) of useful estimated autocorrelation 
is roughly n/4 , where n is number of observation. 

Estimated pacf ([34],p.40;[5],p.82-84): 

k- 1 
rk - I: ef>k-1,jrk-j 

J = l 
' k = 2,3, ... (3.15) 

where 

;pkj = ;pk - 1,j - ;pkk;pk- 1,k-j ' k = 3, 4; .. .. . 'j = 1, 2, .. ., k - 1. (3.16) 

That recursive equations gives fairly good estimates of the pad as long as a 
stationary series. 
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.3.2.2 Moving Average Process 

Moving Average Model (MA(q)). 

Definition 2 {25] A moving average of order q is a process Zt that may be 

describes by the equation 

Zt = at - B1at-l - ... - Bqat- q (3.17) 

t = q,q+l, .. ... 

The coefficient Bo, B1, .. . ,Bk E R and at is white noise with meanµ and stan­
dard deviation a. The value Zt of the process at time t is weighted sum of the 
k+ 1 immediately preceding value of the white process ai . 

lnvertibility Condition 

The Invertibility requirement ensures that larger weight should be attached to 
more recent observations. If a model is non invertibility than the weight placed 
on the past observations do not decline as we move further to the past. 

The set of parameter Bi, B2 , . .. ,BP of MA(q) process (3.17) must satisfy cer­
tain conditions for the process to be invertibility These conditions are summa­
rized in following table. 

Summary of invertibility conditions for MA coefficients 

Model Type lnvertibility Condition 
MA(O) Always invertible 
MA(l) IB1I < 1 
MA(2) IB2I < 1, B1 + B2 < 1, B2 - B1 < 1 

The invertibility condition become complicated when q > 2. Whenq > 2, we 
can at least check the necessary condition for invertibility 

B1 + B2 + ... + Bq < 1. 

Theoretical autocorrelation function ( acf) 

The theoretical autocorrelation function for MA( q) process will be discussed in 
this subsection. 

Consider the MA(q) process . 

Zt (1 - B1B - ... - BqBq) at 

B (B) at (3.18) 

autocovariance function 

'Yk 

19 

k = O 
k = 1, 2, ... , q 

k > q 
(3.19) 



and the autocorrelation function 

k = l,2, ... ,q 

k>q 
(3.20) 

The autocorrelation function of moVing average process has cut-off at lag q. 
Example, MA(l) process. 
Variance 

and autocorrelation function 

k=O 
k = l 

k>l 

(3.21) 

(3.22) 

The autocorrelation at lag zero is always 1, at lag 1 is non zero and all other 
autocorrelation are zero. 

In a stationary AR(p), at can be represented as a finite weighted sum 9.f 
previous Zt 's or Zt as an infinite weighted sum of previous at 's. In a invertable 
MA( q) , it can be represented as a finite weighted sum of previous at 's or at 
can be represented as a infinite weighted sum of previous Zt 's 

3.2.3 ARMA Processes 

Autoregressive-Moving Average models (ARMA (p,q)). 

Definition 3 [25}The process Zt is a mixed auto-regressive order p and moving 
avemge order q if it satisfies the difference equation 

Zt = ¢1 Zt- 1 + </>2Zt -'-2 + ... + </>pZt - p +flt+ B1at- 1 + ... + Bpat- p 

fort = p,p + 1, .. . . We denote this process as an ARMA{p,q) process. 

Stationarity and lnvertibility Condition 

Consider the ARMA (p, q) model 

</> (B) it = B (B) at. 

(3.23) 

(3.24) 

Stationary condition for '(3.24) is the roots of characteristic equation </> (B) = 0 

must lies outside unit circle and invertible condition is the roots of B (B) lies 
outside unit circle. 
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3.3 Model Identification 

Identification is a critical stage in model building, and a knowledge of the the­
oretical acf's and pacf's is required for effective identification. Knowing the 
association between the common theoretical acf's and pacf's and their corre­
sponding process does not guarantee that we will identify the best model, but 
by familiarity with the acf's and pacf's improve our changes of finding good 
model quickly. 

At this stage we,compare the estimated acf and pacf with various theoretical 
acf's and pacf to find a match. A model whose theoretical acf and pacf best 
match the estimated acf and pacf is chosen as a tentative model. The charac­
teristics of theoretical acf and pacf for some common stationary process is listed 
at following table : 

Characteristics of common stationary processes 

Process acf pacf 
AR(I) Exponential decay: (i) spike at lag 1, then cuts 

on the positive side if off to zero;(i) spike is 
¢1 > O; (ii) alternating positive if ¢ 1 > O; (ii) 
in sign starting on the spike is negatives if ¢2 < 
negative side if ¢ 1 < 0. o. 

AR(2) A mixture of exponential Spike at lags 1 and 2, 
decays or damped sine then cuts off to zero. 
wave. The exact pattern 
depends on the signs and 
sizes of </>1 and ¢2 

MA(l) Spike at lag 1, then cut Damps out 
off to zero: ( i ) spike is exponentially: ( i) alter-
positive if 81 < O; (ii) nating in sign, starting 
spike is negative if 01 > 0 on the positive side, 

if 81 < .O; (ii) on the 
negative side, if 81 > 0 

MA(2) Spike at lags 1 and 2, A mixture of exponential 
then cuts off to zero decays or a damped sine 

wave. The ecaxt pattern 
depends on the signs and 
sizes of 81 and 82 . 

ARMA(I,1) Exponential decay from Exponential decay from 
lag 1: (i) sign of p1 = lagl: (i) ¢11 = P1i 

signof(¢1 - 81 ) ; (ii) all (ii) all one sign if 81 > 
one sign if ¢1 > O· 

' 
O; (iii) alternating in sign 

(iii ) alternating in sign if if 01 < o. 
¢1<0 
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3.4 Estimation 

From the previous stage we obtain some rough estimates of many autocorrelation 
and partial auto correlation as a guide to find an appropriate model. In the 
estimation stage we use available data for estimating parameter in efficient way. 

This chapter deal with parameters estimation of Autoregressive, Moving 
average models . 

3.4.1 Autoregressive 

Substitute Zt = Zt - µ into(3.l) than we get 

Zt = µ + <t>iZt- 1 + </>~Zt-2 + ... + <1>;zt-p +at (3.25) 

t = p,p+ 1, .... , where at is white noise with mean 0 and variance a2 • Now, the 
problem is : how to estimate the parameter µ, <Pi and a , given N observations. 

We will discuss two methods for solving that problem, viz least square and 
maximum likelihood method. 

Least Square (LS) Estimator 

By looking Zt as a linear regression of the p previous value Zt-1, Zt- 2, .. ., Zt- p 
, we applied LS method t,o this problem. 

Recall equation (3.1), and write it in the form: 

(3.26) 

we 19ok for the value of parameter µ, <f>i and a for which Ea~ minimum. From 
[25] , we have normal equations 

where 

and 

j = l 

p 

N-1 

= _1_Lzt 
N-p t =n 

iift + Lif>ic(i,j) 
j=l 

c(i, O) 

Zi 

c( i, j) 

l N-1 

N - L Zt-i 
p t=p 

1,2, ... ,p 

l N - 1 

N - L Zt-jZt-1· 
p t=p 

1,2, .. . ,p 

J 0, 1, ... ,p 
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These normal equations yield p + 1 estimator ofµ, ¢ 1 , . . . , <l>p · 
a2 can be estimated by 

The variance 

Maximum Likelihood (ML) Estimation 

The assumption which are needed in maximum likelihood approach are : 

a . the joint probability density function of the initial conditions 

zo, zi, .. . , zp- 1 is known ,and 

(3.31) 

b. the probability density function of white noise also is known.( in this 
discussion only normally distributed will be considered). 

We look for the value of parameter µ, ¢1 , ... , </>P which are maximize 

% (z, -µ-t,¢;zH)' (3.32) 

The variance a 2 can be estimated by 

N-1 ( p ) 

2 

&2 = N ~ L Zt - µ - L ;pj Zt - j 
p t = p j = l 

(3.33) 

The LS and ML estimation forµ and </>i are identical if the white noise are 
normally distributed (as we suppose they are) (34]. 

(5] prefer to use the ML method than LS, because under assumption that 
the model is correct, the estimate derived from ML criterion reflect all useful 
information about the parameter contained in the data, but the computation 
for finding the exact ML estimate is rather difficult, except the white noise are 
normally distributed ((5], (18],[34]). 

The LS and ML are asymptotically unbiased, consistent and asymptotically 
efficient under assumption the process is normally distributed [25]. 

3.4.2 Moving Average 

Beside maximum likelihood method, [25] propose nonlinear least square method 
for estimating parameter of moving average model. The most commonly used 
nonlinear least squares method is marquardt's compromise, a combination of 
Gauss-Newton linearization and the gradient method. This method converges 
quickly to least squares value in most cases [34]. 
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3.5 Diagnostic Checking 

At this stage we determine whether a model is statistically adequate or not, 
in particular for independent white noises. Our goal is to build a model that 
completely explains any autocorrelation in the original series. If the assumption 
is not satisfies, there is an autocorrelation in the original series that has not 
been explained by the time series model. At this stage we use the residuals to 
test hypothesis about the independent of white noise. 

The basic analytic tool for testing the hypothesis is the residual acf 

The hypothesis Ho : Pk (a) = 0 for each residual autocorrelation will be 
tested. [34] propose t-test for testing that hypothesis. Hypothesis will be re­
jected if the absolute value of approximate t-value 

where 

t = _ r_k--'-( a--'-A ) _ 

sh (a)] 

( ) 

1/2 
k - 1 

Sh (a)] = 1+2 f; Tj (a)2 
. n - l/

2 

is larger than 1.25 at lag 1,2 and 3 and larger than 1.6 at larger lag. Other 
method for testing independency of white noise are chi-square test [26), residual 
plot, overfitting etc.[34]. 
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Chapter 4 

Regression Model with 
Time Series Error 

4.1 Introduction 

This chapter deals with regression model which errors described by t ime series 
model. [1] gave a review of earlier work on regression analysis when autocorrela­
tion exist. [13r proved consistency properties of weighted least squares estimates 
of parameter f3 when f (xt, fJ ) is nonlinear and et has a continuous spectrum. 
[39] consider the least squares estimation when the model is linear and errors 
follow an autoregressive moving average model. [11] provided a procedure for 
estimating the unknown parameter f3 in nonlinear regression settings. [16] con­
sider maximum likelihood estimation under same conditions as those of [39], 
they used Kalman filter techniques. The same work has been done by [42] un­
der the condition the root lies on the unit circle.' [48] consider the regression 
model with time series errors but allowed the time process to be nonstationary. 

4.2 Model 

Consider the regression model 

( 4.1) 

where the error et are not independent. 
To represent the correlational structure of the error, we assume that they 

form a stationary time series, so that their mean, assumed zero, and their in­
tercorrelation do not change over time. 

25 



4.3 Nonlinear Regression with Autocorrelated 
Errors 

This section discuss estimation of the unknown parameter f3 of the nonlinear 
time series regression model f(xt,!3) based on [11] . The {et} is assumed to be a 
covariance stationary time series. This means that the covariance cov(et, et+k ) 
of time series depend only on the gap k and not on the position t in time. 

One would estimate {3* by the value of f3 that minimizes 

[y - r (!3) ]'r~ 1 [y - r (!3) l (4.2) 

where r n (were known) is the variance-covariance matrix of the disturbance 
vector e. When r n is not known, the obvious approach is to substitute an 
estimator of r n in formula (4.2). 

Assume that disturbance e follow autoregressive process of order p. 

Estimation Procedure 

1. to compute the ordinary least square estimator B which minimizes 

[y - f ((3) ]'[y - f ((3) l 
using such as modified Gauss-Newton Method or Marquardt's algorithm. 

2. to compute the residual e = y - f({J) and estimate the autocovariances 
up to lag p of the disturbance using 

3. Let 

and 

'Y (h) 
1 n- Jhl 

= - L UtUt+lhl 
n t = l 

h 0, 1, .. . ,p 

[ 

·r(O) 
i' (1) 

i'(p - 1) 

i' (1) 
i' (0) 

i' (p - 2) 

.Y(p-1) 1 
i' (~.~ 2) 

i' (0) 

.Y(p) ]' . 

compute ¢ using the Yule-Walker equations 

¢ = -f'P.yp 

and 
2 ~ 1 a = .y (O) + ¢ i'p· 
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Factor f'; 1 = P;PP and set matrix P (see (11] p.963). 

4. Define 

V' f(x, 8) = [ 8~J(x, 8) ... 8~J(x, 8) ] 

and F (8) =then by p matrix whose the row of V' f(x, 8). 

Compute 0 by minimizing 

and from this value obtain 

and 

(4.6) 

Jn ( 0 - 8*) is asymptotically normal distributed with a variance covari­

ance matrix for which is strongly consistent estimator under appropriate 
regularity conditions. Marquard algorithm used for solving ( 4.6) . (11] re­
ported that ordinary least squares estimation B is a good start value for 
computing 0. The estimation procedure may be iterated by returning the 
second step with 0 replacing B . 

4.4 Regression Mode\s with ARMA Errors. 

A regression model which the errors follow a stationary autoregressive moving 
average will be discussed in this section based on ((39] , [40] ,[16]) . Maximum 
likelihood estimation and simultaneous least squares estimation in regression 
and the linear time series parameter is discussed. ' 

Consider regression model (4.1) with 

m 

f( Xt, {3) = L ,BiXit (4.7) 
i = l 

and the errors et are assumed to follow a stationary mixed autoregressive-moving 
average process. 

The ARMA(p,q) model for errors : 

p q 

et = L </Jjet-j - L Bkat- k +at (4.8) 
_j = l k=l 
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where is {at} a set of independent random deviates with zero mean and variance 
a2 . Define the backshift operator B by Bwt = Wt- 1 for any sequence {Wt} . If 
¢(B) = 1 - L,¢jBj and (}(B) = 1 - L_(}kBk are polynomials in B of degree p 
and q, then ( 4.8) may be written as 

(4.9) 

and (4.1) as 

m e(B) 
Yt = ?=,BiXit + ¢(B)at. 

i = l 

(4.10) 

The assumptions for the model are : 

1. the at are independent and identically distributed with zero mean, variance 
a2 and finite kurtosis ''f2 . 

2. the root of polynomial ¢(z) = 0 and (}(z) = 0 lies outside the unit circle, 
with no single root common to both polynomial 

3. the constants Xit are bounded, for fixed i, j, k and l 

lim .!. """Xi,t-kXj,t- l 
n-+oon ~ 

exists, and mxm matrix {lim(l/ n) L, XitXjt} is positive definite. 

4.4.1 Least Squares Estimation 

(4.11) 

The analysis of this section refers to [39]. It is an extension of conditional sum 
of square approach employed by [5]. 

Suppose that {xiti 1 :Si :Sm} and {yt} are series generated by (4.10) . If 
we knew the true parameter value >. = (,B, ¢, (}) then the random deviates {at} 
could be determined from the relation 

(4.12) 

obtain by solving (4.10) for at. 
The true parameters are unknown, but for any vector of values 

.X = (/31 , .. .,/3m, ¢1 , .. ., J>P,i)i, .. ., Bq )'such that(/> and iJ satisfy 2nd assump­

tion. We define 

(4.13) 
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or (by setting ¢0 = -1), 

q p Tn p 

ai = L:ekat-k - L.":if>jYt- j + L:L.":13i¢jxi,t- j· (4.1~) 
k=l j=O i=lj=O 

Thus, with the errors at as in (4.14) and with appropriate starting point, the 
least square estimate of>. = (/3, </>, 0) are those value of>. which minimize the 
sum of square 

s(~) = L:az 

as a function of ..\ .Since cit is not a linear function of ..\ , these estimates can be 
computed in practice by nonlinear estimation methods. The discussion of time 
series case is provided by [5). 

If the {at} were normally distributed , the log likelihood function of the 

parameter ( ~' a 2
) would be 

logL =constant- ~nloga2 
- 2~2 L:az (4.15) 

and the maximization of (4.15) yields the same estimates of .A as the least 
squares procedure. An estimate of error variance 

(4.16) 

where the at are the residual obtained by replacing>. in (4.13) of (4.14) by the 
estimates >. . 

Distribution of Estimates 

The regression coefficient f3 possess a multivariate normal distribution with 
mean f3 and covariance matrix -:; B-1 , where 

B = { lim _.!:. ~ bitbit} 
n-+CX>n ~ 

t=l 

with the bit(i = 1, ... , m) define by relation 

¢ (B) xii = B(B)bit 

(4.17) 

(4.18) 

The estimates fJ = ( ¢, B) are independent of f3 and are normally distributed 

29 



with mean ry = ( </>, B) and covariance matrix 

a2 [ c E ]-1 
n E' D 

(4.19) 

where 

c { 'Yji-jl} 

D { 8li-il} 
E {wi-i} 

'Yk = E (ut'Ut+k) and 8k = E (vtVt+k) are the lag k autocovariances of the 
autoregressive processes </>(B)ut =at and B(B)vt =at . Wk = E (utVt+k) is the 
lag k cross covariance between these two processes. 

The estimate 0-2 is normal with mean a 2 and variance ~a4(1 + ~-y2 ) , inde­

pendent of ( ¢, B ) and independent of ~ . 
[39] has shown that : 

• the least squares estimates of the regression parameter {3 and the parame­
ter </> and () is a quite good approximation to the first and second moment 
of the exact sampling distributions if the sample size is moderate. 

• the estimates ¢ and B are asymptotically uncorrelated with the regression 
estimates ~ . 

• the Monte Carlo investigation has indicate that the asymptotic result ob­
tained can be misleading, if applied when only few observations are avail­
able. 

Checking Adequacy of Fit 

At previous section the estimation of the regression parameter f3 and the error 
parameters </> , () was discussed. The validity of any methods concerning pa-. 
rameter estimation is predicted on the appropriateness of the assumed form of 
model to begin with, thus an important problem is that of examining model 
adequacy and test of fit . For an adequately fitting model the residuals {at} 
should resemble the random deviates {at} (nearly uncorrelated), so the large 
value of the residual autocorrelation would place the model under suspicion. 
That problem is further discussed in [40] . 

4.4.2 Maximum Likelihood Estimation 

In this subsection I would like to discuss maximum likelihood estimator for re­
gression models with correlated disturbances. The discussion of this problem 
is based on (16], which use Kalman filter. A number of author, for example 
(37), have recently stressed the desirability of computing estimator of ARMA 
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parameter using exact likelihood function. [16] were demonstrated that this ap­
proach had computational, as well as theoretical, advantages over other methods 
and showed how the Kalman filter could be used to calculate exact maximum 
likelihood estimator of ARMA time series models. 

Consider model (4.1), with the disturbance term is assumed to be generated 
by an autoregressive-moving average (p,q) process. The likelihood function for 
this model is 

log L (y; </>, (), {3, a 2) = 1 1 2 1 I --nlog(27r) - - nloga - -logjV 
2 2 2 

(4.20) 

1 
--a-2 (y - xf3)' y - 1 (y - xf3 ) 

2 

matrix V is define by E(ee') = a2V. The assumption needed to ensure the 
validity of kalman filter formulation of the generalized least squares estimator 
of f3 is that the autoregressive moving average process generating the e's be 
stationary. 

[16] has shown the advantages of Kalman approach such as: 

• predictions of futures value of the dependent variable may be mad very 
easily when Kalman filter adopted. 

• the recursions produce a setn - k prediction errors which normally and 
independently distributed with zero mean and constant variance when the 
model is correctly specified and </>, () must usually be estimated. 

An alternative maximum likelihood procedure which incorporates the first 
observation and the stationary condition of the error process is proposed in 
[2] . This estimator is superior to conventional ones on theoretical grounds, and 
sampling experiments suggest that it may yield substantially better estimates 
in some circumstances. 

Some econometrics book also discuss this problem, for example: [35], [17] 
and [37] . 

31 



Chapter 5 

Curve fitting and 
Smoothing 

5.1 Introduction 

The curve fitting problem can be formulated as follow: given value Yr , r = 
1, .. ., m of the dependent variable y, corresponding to value Xr , r = 1, ... , m of 
independent variable x, fit to the Yr a function y(x) := y(x; B) of known form 
but containing a vector e of n disposable parameter, to be determined such that 
y(xr) :::=Yr . As far as the form of the function y(x) is concerned, it is most 
common to use polynomial or spline function. 

The objectives of curve fitting [7] : 

• Parameter Estimation 

The form of y(x) may be dedicated by the context of the application in 
which case the parameter Bi have specific physical meaning. The primary 
goal is then to estimated these parameters as accurately as possible from 
the given data. 

• Data Smoothing 

ff the given value Yr are accurate enough, it may be sufficient to determine 
an interpolating function y(x). However, in most application the value Yr 
will be subjected to measurement errors. We hope that with this curve 
fitting process, these error will more or less be smoothed out and the graph 
of y(x) looks smooth enough. 

• Functional representation 

The representation of a discrete set of the data point ( Xr, Yr) by a function 
y(x) may have a number of advantages. First of all, value of any point 
x in the range of representation are now readily obtain. Further more 
the approximation can be used for determining derivative value, definite 
integral etc. 
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• Data reduction 

If the results have to be store for later use, it may be important that the 
number of parameter ()i is less than number of data point, in which case 
we speak of data reduction. 

5.2 Curve fitting with Spline 

The fact that we choose splines as approximating functions means that the 
parameter ()i to be determined (or to be fixed) are: 

• the degree k of the spline 

• the number and position of the knot 

Approximation Criterion 
The least-squares criterion 
The least-squares criterion is very well known and general approximation 

criterion. Applied to spline function it means that we have to determine the 
spline s(x) for which expression 

m 

b := ~)wr(Yr - s(xr)))2 

r=l 

is minimized. The numbers Wr are weights. 

The natural smoothing spline criterion 
Find the function y(x) for which 

is minimal, subject to the condition 

m 

b := L(wr(Yr - s(xr)))2
:::; S 

r=l 

where Sis a specified number. 
The criterion of Powell 
Determine a cubic spline s(x) that minimized 

g 

t.p == 6 +I: cwidi)
2 

i=l 

(5.1) 

where 6 is the result of (5.l). This criteria take care of smoothness of s(x). 
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5.3 Nonparametric Regression Smoothing 

Nonparametric regression attempts to uncover functional relationships without 
making sweeping assumptions on the type of functional dependence. For this 
reason, nonparametric regression is the smoothing method of choice when there 
is no theoretical basis or a priori reason for choosing a particular functional form 
([8), [9]) . 

Cubic spline smoothing is a particularly flexible form of nonparametric re­
gression based on strictly interpolating splines. The smoothing that nonpara­
metric regression performs can be thought of as a process where each data point 
is replaced by a local average of the surrounding data points. Different nonpara­
metric regression techniques define and calculate this local average in different 
ways. 

The smoothing spline's determination of what is 'local' is based on the data 
itself [45], making it a particularly flexible smoother. With the underlying 
mathematical form of the interpolation spline, the smoothing spline has the 
ability to model a wide range of functional forms while the flexibility of the 
smoothing procedure makes smoothing splines especially robust. 

Like most non-parametric regression techniques, the smoothing spline is itself 
a function of a smoothing parameter. This parameter determines the balance 
between fidelity to the data and the smoothness of the curve. Consequently, the 
successful use of smoothing splines to separate the signal from the noise depends 
on the choice of the "optimal" smoothing parameter. 

In application, we often find that the error are correlated; for example: 
time series data. We know that correlation affect the selection of smoothing 
parameter, which are critical to the performance of smoothing spline estimates. 
That problem has been discussed in [55],[23], [51]. 
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Appendix A 

Literature Study 

Supervisor : 

• dr. K. Poortema 

• dr.J.F. Fankena 

For my final project two subjects are important: 

(1). how to deal with dependent measurements? 

(2). methods to do some curve fitting. 

For subject (1) time series models have to be studied. Not only the respective 
model (autoregressive models, moving average models and combinations of these 
two type of models) have to be studied. Methods for choosing a model and 
checking whether a model suits the data should be studied as well. 

Curve fitting may be done by means of regression models. H e.g. the kth 
predictor variable, xk , is chosen to be xk = tk the polynomial curves are fitted. 
Perhaps splines functions may be better choice for the predictor variables. At 
any case regression models may applied for subject (2) and these model have to 
extended/ generalized in order to deal with dependent measurements. 

Regression models with errors described by a time series model are the ex­
tensions/ generalizations which have to be studied. Search for theory developed 
for this kind of regression models. -
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