INTENSIFIKASI PENGUAPAN AIR LAUT MENGGUNAKAN 3D ROPE EVAPORATOR

Laporan Penelitian

Disusun untuk memenuhi tugas akhir guna mencapai gelar sarjana di bidang ilmu Teknik Kimia

oleh:

Vincent

(6141901016)

Pembimbing:

Prof. Dr. Ir. Judy R. B. Witono, M.App.Sc. Herry Santoso, S.T., M.T.M., Ph.D.

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS KATOLIK PARAHYANGAN 2023

LEMBAR PENGESAHAN

JUDUL : INTENSIFIKASI PENGUAPAN AIR LAUT MENGGUNAKAN 3D ROPE EVAPORATOR

TATAN:	 		
		1967	

Telah diperiksa dan disetujui, Bandung, 06 Februari 2023

Pembimbing 1,

Pembimbing 2,

Prof. Dr. Ir. Judy R. B. Witono, M.App.Sc.

Herry Santoso, S.T., M.T.M., Ph.D.

LEMBAR REVISI

JUDUL : INTENSIFIKASI PENGUAPAN AIR LAUT MENGGUNAKAN 3D ROPE EVAPORATOR

CATATAN	N:			

Telah diperiksa dan disetujui, Bandung, 06 Februari 2023

Penguji,

I Gede Pandega Wiratama S.T., M. T.

SURAT PERNYATAAN

Saya yang bertanda tangan di bawah ini :

Nama: Vincent

NPM: 6141901016

dengan ini menyatakan bahwa laporan penelitian dengan judul:

INTENSIFIKASI PENGUAPAN AIR LAUT MENGGUNAKAN 3D ROPE EVAPORATOR

adalah hasil pekerjaan saya dan seluruh ide, pendapat atau materi dari sumber lain telah dikutip dengan cara penulisan referensi yang sesuai.

Pernyataan ini saya buat dengan sebenar-benarnya dan jika pernyataan ini tidak sesuai dengan kenyataan, maka saya bersedia menanggung sanksi sesuai dengan peraturan yang berlaku.

Bandung, 06 Februari 2023

INTISARI

Garam adalah bahan pokok kebutuhan manusia. Indonesia merupakan sebuah negara kepulauan yang memiliki kemampuan untuk memproduksi garam untuk kebutuhan warganya, namun sangat disayangkan untuk memenuhi hal tersebut Indonesia terkadang masih perlu melalukan impor kepada negara penghasil garam lainnya. Kekurangan produksi bisa terjadi dikarenakan perubahan cuaca sehingga penguapan kurang maksimal maupun penggunaan metode produksi yang kurang efektif. Metode 3D Rope adalah salah satu dari beberapa metode yang dapat digunakan untuk mempercepat produksi garam.

Penggunaan 3D Rope masih jarang dilakukan di Indonesia, yang mungkin dikarenakan masih berupa hal yang baru dan masih banyak tugas yang harus dilaksanakan untuk mendapatkan variabel terbaik puncak performa alat 3D Rope. Penelitian ini diharapkan dapat mampu memberi kontribusi mengenai variabel yang berdampak kepada efektivitas alat 3D Rope, antara lain %RH dimana dampak %RH yang tinggi (saturated) akan mengakibatkan penguapan tidak terjadi serta penggunaan banyak jumlah untaian dimana semakin banyak jumlah untaian yang digunakan akan meningkatkan luas permukaan penguapan sehingga laju penguapan meningkat.

Data yang telah didapatkan juga diolah menggunakan Matlab agar dapat dimodelkan dengan persamaan Harbeck, Penman, dan Priestley-Taylor namun dari ketiga persamaan tersebut kurang dapat mewakili penguapan yang terjadi pada alat 3D Rope dikarenakan dampak laju alir udara terhadap geometri sistem sehingga perhitungan model terhadap data asli menjadi *undervalued*. Penggunaan persamaan pemodelan yang menggunakan faktor resistansi udara diharapkan dapat mengatasi permasalahan tersebut dimana persamaan ini lebih dapat menggambarkan dampak geometri sistem terhadap laju penguapan.

Kata kunci: Garam, Penguapan, 3D Rope, Variabel, Pemodelan

ABSTRACT

Salt is a staple commodity for human consumption. Indonesia is a nation with a capability to produce it's own salt for it's daily usage, but sadly Indonesia still need to import much of it's need to other salt producer nation. Small production capability might caused by bad weather that reduce evaporation rate or using lower efficiency method. 3D Rope method is one of salt producing method that can produce salt faster.

The usage of 3D Rope is still rare in Indonesia, that might be contributed by it's novelty and still needed many more perfection in order to achieve peak performance by twerking variables. This research is hoped to contribute variable that affect efficiency of 3D Rope, some of them are %RH that if the air is saturated that mean no evaporation will be made and also the quantity of holder bundle that used in the 3D Rope where the more bundle used the more evaporation area and that mean evaporation rate is increased.

The retrieved data will be modeled by using Matlab using three equations, namely Harbeck, Penman, and Priestley-Taylor. But of all of those three equation still not fully represent evaporation on 3D Rope due to wind speed affect in work with surface geometry of the system that affecting the calculation to be undervalued compared to the actual data. Air resistance might represent more similarly the evaporation data and the model, by using an equation that include air resistance in its calculation hopefully it will give better model that represent the data.

Keywordi: Salt, Evaporation, 3D Rope, Variable, Model

KATA PENGANTAR

Puji syukur panjatkan kehadapan Tuhan Yang Maha Esa karena atas berkat rahmatNya laporan penelitian ini yang berjudul "Intensifikasi Penguapan Air Laut Menggunakan
3D Rope Evaporator" dapat diselesaikan tepat pada waktunya. Laporan penelitian ini
disusun untuk memenuhi tugas akhir guna mencapai gelar sarjana di bidang ilmu Teknik
Kimia. Dalam penyusunan laporan penelitian ini, penulis mendapatkan banyak bantuan,
masukan, bimbingan, dan dukungan dari berbagai pihak. Untuk itu, melalui kesempatan ini
penulis ingin menyampaikan ucapan terima kasih yang tulus kepada:

- Keluarga penulis terutama orangtua atas jasa dan kerja kerasnya sehingga penulis dapat melanjutkan pendidikan ke jenjang yang lebih tinggi dan terus mendukung atas keputusan yang dipilih oleh penulis.
- Ibu Prof. Dr. Ir. Judy R. B. Witono, M.App.Sc. dan Bapak Herry Santoso, S.T., M.T.M., Ph.D. selaku dosen pembimbing laporan penelitian atas segala bimbingan, arahan serta saran yang diberikan kepada penulis sehingga laporan penelitian ini dapat diselesaikan dengan baik.
- Segenap masyarakat Kecamatan Merdeka/O'lio, Kupang Timur khususnya Bapak Matias dan keluarga serta Bapak Anderius serta keluarga yang telah membantu dalam pembuatan alat dan pengumpulan data yang diperlukan dalam penyusunan laporan ini.

Penulis menyadari bahwa laporan penelitian ini masih jauh dari sempurna dan perlu pendalaman lebih lanjut. Oleh karena itu, penulis mengharapkan kritik dan saran dari semua pihak yang bersifat konstruktif demi kesempurnaan laporan penelitian ini. Penulis berharap semoga gagasan – gagasan pada laporan penelitian ini dapat bermanfaat bagi dunia ilmu pengetahuan dan bidang ilmu teknik kimia.

Bandung, 06 Februari 2023

Penulis

DAFTAR ISI

HALA	MA	N JUDUL	i
LEMB	AR I	PENGESAHAN	
SURA	T PE	RNYATAAN	
LEMB	AR I	REVISI	iv
KATA	PEN	NGANTAR	iv
DAFT.	AR I	SI	
DAFT.	AR (GAMBAR	ix
DAFT	AR 7	rabel	xii
DAFTA	AR S	IMBOL	xii
INTISA	ARI		xiii
ABSTR	ACT		xiv
BAB 1	l		1
1.1	La	itar Belakang	<u>1</u>
1.2	Te	ema Sentral Masalah	2
1.3	Id	entifikasi Masalah	3
1.4	Pr	emis .	3
1.5	H	potesis	3
1.6		ıjuan Penelitian	
1.7	М	anfaat Penelitian	4
BAB 2	2		5
2.1		ir Laut	
2.2	G	aram	6
2.3	Ev	/aporasi	7
2.4	Pr	oduksi Garam Hasil Laut	10
2.	4.1	Metode Konvensional (Solar Evaporation)	10
2.	4.2	Metode Geomembran	10
2.	4.3	3D Rope Evaporator	
BAB 3	}		12
3.1	Re	encana Penelitian	12
3.2	A	at	12

33	3.2.1	3D Rope Evaporator	. 12
- 3	3.2.2	Holder dan Untaian	13
3.3	Bal	1an	. 14
3.4	4 Van	riasi Penelitian	. 14
3.5	Per	nodelan Penguapan	. 14
	3.5.1	Penman	
1	3.5.2	Priestley Taylor	15
15	3.5.3	Harbeck	15
3.6	5 Pro	sedur Penelitian	. 15
	3.6.1	Pengambilan Bahan Penelitian	. 15
15	3.6.2	Kalibrasi Bak Penampung	. 15
33	3.6.3	Run Utama	
	3.6.3.1	Perbandingan Efisienitas Jumlah Lubang Yang Diisi Sumbu Pada Holder	17
	3.6.3.2	Perbandingan Efisienitas 3D Rope Evaporator Dengan Konvensional	18
	3.6.3.3	Pemodelan dan Validasi Parameter	. 18
3.7	7 An	alisis	19
3.8	B Lol	kasi Dan Tempat Kerja	19
BAB	4		. 21
4.1	Ko:	ndisi Lingkungan Alat 3D Rope	. 22
	4.1.1	Pengaruh Laju Alir Udara	23
55	4.1.2	Pengaruh Temperatur	.,24
	4.1.2	Pengaruh %RH	. 24
4.2	2 Per	gunaan Sumbu	25
4.3	3 Laj	u Penguapan	28
4.4	Į Efi	sienitas Penguapan	. 30
4.5	Per	nodelan Penguapan	. 31
4.6	5 Val	idasi Pemodelan	33
4.7	7 Per	injauan Pemodelan Yang Cocok	35
BAB	5		.36
5.1	Ke:	simpulan	. 36
5.2	2 Sar	an	36
DAF	TAR P	USTAKA	37
LAN	IPIRAN	ī A	40
		igunaan Sumbu	40

A.2	Fungsi Pemodelan	40
A.2.	l Fungsi Harbeck	40
A.2.	2 Fungsi Penman	41
A.2.	3 Fungsi Priestley-Taylor	41
A.3	Penentuan Parameter	42
A.3.	1 Metode Harbeck	42
A.3.	2 Metode Penman	44
A.3.	3 Metode Priestley-Taylor	46
A.4	Validasi Parameter	49
A.4.	1 Metode Harbeck	49
A.4.	2 Metode Penman	50
A.4.	3 Metode Priestley-Taylor	52
LAMPI	RAN B	55
B.1	Kalibrasi Bak Penampung	55
B.1.1	Bak Penampung 3D Rope	
B.1.2	Bak Penampung Konvensional	56
B.2	Run Utama	57
B.3	Kurva Perbandingan	
B.3.	l Kurva Perbandingan Suhu	59
B.3.	2Kurva Perbandingan Laju Alir Udara	60
B.3.	3 Kurva Perbandingan %RH	61
B.4	Parameter, SSE, Dan R^2 Pemodelan	61
B.5	Persentase Kenaikan Parameter	62
B 6	Validasi Pemodelan	62

DAFTAR TABEL

Gambar 2.1 Pengelompokan Garam	7
Gambar 2.2 Contoh Aplikasi Rangkaian 3d Rope Evaporator	11
Gambar 2.3 Contoh Skema Rangkaian 3d Rope Evaporator	iii
Gambar 3.1 Skema 3d Rope Evaporator	12
Gambar 3.2 Skema holder	13
Gambar 3.3 Prosedur pengambilan air laut	16
Gambar 3.4 Prosedur pelarutan garam dengan air tawar	16
Gambar 3.5 Prosedur Kalibrasi Bak Penampung	17
Gambar 3.6 Prosedur Run Utama Perbandingan Efisienitas Jumlah Holder dan Par Tali	njang 17
Gambar 3.7 Perbandingan Efisienitas 3d Rope Evaporator Dengan Metode Tradis	ional.18
Gambar 3.8 Penentuan pemodelan dan parameter	18
Gambar 3.9 Validasi parameter	19
Gambar 4.1 Alat 3D Rope dan Konvensional	21
Gambar 4.2 Grafik Plot Laju Penguapan Terhadap Laju Alir Udara 02-03 Novem 2022	ber 23
Gambar 4.3 Grafik Plot Laju Penguapan Terhadap Laju Alir Udara 04-05 Novem 2022	ber 23
Gambar 4.4 Grafik Plot Laju Penguapan Terhadap Suhu Lingkungan 02-03 Nove 2022	mber 24
Gambar 4.5 Grafik Plot Laju Penguapan Terhadap Suhu Lingkungan 04-05 Nove 2022	mber 24
Gambar 4.6 Grafik Plot Laju Penguapan Terhadap %RH Lingkungan 02-03 Nove 2022	mber 25
Gambar 4.7 Grafik Plot Laju Penguapan Terhadap %RH Lingkungan 04-05 Nove 2022	
Gambar 4.8 Ilustrasi Efek Penghalang (Bangunan) Terhadap Aliran Udara	26
Gambar 4.9 Ilustrasi Efek Penghalang Terhadap Aliran Udara Menggunakan Asa	р27
Gambar 4.10 Grafik Kenaikan Laju Alir Terhadap Perbedaan suhu	27
Gambar 4.11 Grafik Dampak Kenaikan Laju Alir Fluida Terhadap Laju Evaporas	i30
Gambar 4.12 Grafik Validasi Parameter 02 November Terhadap 04 November	33
Gambar 4.13 Grafik Validasi Parameter 03 November Terhadap 05 November	34

Gambar B.1	Kurva Kalibrasi Bak Penampung 3D Rope	6
Gambar B.2	Kurva Kalibrasi Bak Penampung Konvensional	7
Gambar B.3 2022	Grafik Plot Laju Penguapan Terhadap Suhu Lingkungan 02-03 November	59
	Grafik Plot Laju Penguapan Terhadap Suhu Lingkungan 04-05 November	50
	Grafik Plot Laju Penguapan Terhadap Laju Alir Udara 02-03 November	50
	Grafîk Plot Laju Penguapan Terhadap Laju Alir Udara 04-05 November	50
	Grafik Plot Laju Penguapan Terhadap %RH Lingkungan 02-03 November	
2022	Grafik Plot Laju Penguapan Terhadap %RH Lingkungan 04-05 November	
Gambar B.9	Grafik Validasi Parameter 02 November Terhadap 04 November	3
Gambar B.1	0 Grafik Validasi Parameter 03 November Terhadap 05 November	53

DAFTAR GAMBAR

Tabel 1.1 Data Kebutuhan Garam di Indonesia (ton).	1
Tabel 1.2 Data Impor Garam tahun 2015-2019 (ton)	2
Tabel 2.1 Komposisi Air Laut	5
Tabel 2.2 Tingkat Pengendapan Senyawa pada Air Laut	6
Tabel 3.1 Jadwal Pengerjaan Penelitian	20
Tabel 4.1 Perbandingan Laju Penguapan Variasi Sumbu 17 & Sumbu 25	26
Tabel 4.2 Perbandingan Laju Penguapan Metode Konvensional	29
Tabel 4.3 Perbandingan Laju Penguapan Metode 3D Rope	29
Tabel 4.4 Rasio Laju Penguapan 3D Rope terhadap metode konvensional	31
Tabel 4.5 Hasil Pengolahan Matlab	32
Tabel 4.6 Perbandingan Antara Konstanta Tebakan Awal Dengan Konstanta Akhir	32
Tabel 4.7 Perbandingan SSE dan R^2 Validasi Parameter	34
Tabel B.1 Kalibrasi Bak Penampung 3D Rope	55
Tabel B.2 Kalibrasi Bak Penampung Konvensional	56
Tabel B.3 02 November 2023	57
Tabel B.4 03 November 2023	58
Tabel B.5 04 November 202	58
Tabel B.6 05 November 2023	59
Tabel B.7 02 November 2023 dan 03 November 2023	61
Tabel B.8 04 November 2023 dan 05 November 2023	62
Tabel B.9 Persentase Kenaikan	62
Tabel B.10 Persentase Kenaikan	62
Tabel 4.2 Perbandingan Laju Penguapan Metode Konvensional	29
Tabel 4.3 Perbandingan Laju Penguapan Metode 3D Rope	29
Tabel 4.4 Rasio Laju Penguapan 3D Rope terhadap metode konvensiona	31
Tabel 4.5 Hasil Pengolahan Matlab	32
Tabel 4.6 Perbandingan Antara Konstanta Tebakan Awal Dengan Konstanta Akhir	32
Tabel 4.7 Perbandingan SSE dan R^2 Validasi Parameter	34
Tabel B.1 Kalibrasi Bak Penampung 3D Rope	55
Tabel B.2 Kalibrasi Bak Penampung Konvensional	

DAFTAR SIMBOL

```
٠
          = laju evaporasi (mm/hari)
Rn
          = jumlah radiasi (W/m²)
2
          = kalor laten (J/Kg °C)
          = kecepatan angin (m/s)
          = psychrometic constant (KPa/°C), dapat dicari melalui
Δ
          = slope tekanan uap jenuh dengan suhu (KPa/°C), dapat dicari melalui
Ts
          = suhu rata -rata udara (°C)
Ta
          = suhu rata-rata air (°C)
Tw
          = suhu air (°C)
          = tekanan uap jenuh pada permukaan air (mbar), dapat dicari melalui
es
          = tekanan uap jenuh udara (mbar), dapat dicari melalui
ea
P
          = tekanan atmosferik (kPa)
Le
          = panas laten flux (MJ/m<sup>2</sup>)
          = kapasitas panas (J/g°C)
Cp
R_n
          = net radiasi (W/m<sup>2</sup>)
Gesc
          = konstanta solar (0.082W/m<sup>2</sup>min)
dt
          = jarak relatif antar bumi matahari
          = nomor hari pada tahun (misal 1 untuk 1 Januari, 365 untuk 31 Desember)
          = sudut matahari terbenam (rad)
ωs
          = latitide suatu tempat (rad)
Φ
δ
          = deklinasi matahari (rad)

    durasi penyinaran matahari maksimal (jam)

    durasi penyinaran matahari (jam)

as
          = parameter regresi
          = parameter regresi
bs
          = parameter regresi
Kh
          = parameter regresi
ah
          = albedo surface
α
Rnl
          = net long wave radiation
          = konstanta boltzman (4.903x10-9MJ/K4m2day)
σ
```

BAB I PENDAHULUAN

1.1 Latar Belakang

Indonesia adalah negara maritim yang mempunyai panjang total garis pesisir sebesar 99.093 km. Nilai tersebut menjadikan Indonesia sebagai salah satu negara yang mempunyai nilai total panjang garis pesisir terbesar di dunia. Hal tersebut menjadi keuntungan bagi negara Indonesia dalam mencukupi kebutuhan hasil laut untuk masyarakatnya yang mencapai 278.752.361 jiwa pada tahun 2022, terkhususnya garam laut (NaCl). Garam tersebut terdiri atas garam konsumsi berupa garam dapur dan garam untuk pertanian-peternakan serta garam industri yang digunakan untuk industri kimia, farmasi, perminyakan, dan lainnya.

Tahun 2020 Indonesia memiliki kebutuhan garam total sekitar 4.464.670 ton, berikut adalah tabel data kebutuhan garam di Indonesia.

Tabel 1.1 Data Kebutuhan Garam di Indonesia (ton) (Badan Pusat Statistik, 2020)

Rincian	2016	2017	2018	2019	Estimasi 2020
Industri manufaktur	2.881.299	3.088.007	3.339.437	3.466.819	3.744.655
Rumah tangga	307.595	310.076	313.775	317.634	321.541
Komersial	326.546	313.077	339.739	358.085	377.422
Peternakan dan perkebunan	17.448	18.175	18.932	19.964	21.052
Total	3.532.887	3.729.334	4.011.883	4.162.502	4.464.670

Mencukupi kebutuhan konsumsinya, Indonesia memproduksi garam secara lokal sebanyak 2.327.078 ton, dimana sisa 2.137.592 ton akan diimpor dari beberapa negara penghasil garam (Amien & Adrienne, 2020). Sejak tahun 2019 jumlah impor garam Indonesia sudah mulai berkurang. Berikut adalah tabel data impor garam Indonesia pada tahun 2015-2019 yang telah didata oleh Badan Pusat Statistik.

Asal	2015	2016	2017	2018	2019
Australia	1.489.582,0	1.753.934,2	2.296.681,3	2.603.186,0	1.869.684,2
India	333.731,2	380.505,4	251.590,1	227.925,6	719.550,4
Tiongkok	37.404,1	4.630,1	269,2	899,7	568,0
Selandia Baru	2.248,0	2.926,1	2.669,5	3.806,8	4.052,4
Singapura	30,4	91,2	121,5	239,0	229,3
Jerman	237,0	369,9	300,1	236,0	243,0
Denmark	343,0	367,5	486,8	816,7	496,2
Lainnya	473,6	918,6	704,7	1.967,6	573,8
Total	1.864.049,3	2.143.743,0	2.552.823,2	2.839.077,4	2.595.397,3

Tabel 1.2 Data Impor Garam tahun 2015-2019 (ton) (Badan Pusat Statistik, 2020)

Indonesia telah menurukan nilai impor garam, namun kebutuhan garam untuk industri di Indonesia sendiri meningkat 5%-7% per tahunnya (Badan Pusat Statistik, 2020), sehingga perlu diadakan intensifikasi produksi garam untuk mengurangi impor garam . Produksi garam di Indonesia sendiri umumnya masih berupa tradisional yang dipengaruhi oleh curah hujan tiap tahunnya, dimana untuk tahun 2022 sendiri diprediksi mengalami titik terendah senilai 1,20 juta ton (Pusat Riset Kelautan BRSDMKP KKP,2022).

Peningkatan produksi garam perlu dilaksanakan untuk mengatasi masalah tersebut. Salah satu metode yang dapat digunakan adalah 3D Rope Evaporator yang menggunakan media tali untuk memperluas permukaan penguapan air laut sehingga terjadi percepatan proses pembuatan garam. Metode 3D Rope Evaporator sendiri bila dibandingkan dengan metode tradisional akan lebih efisien dan memiliki nilai produksi yang lebih besar.

1.2 Tema Sentral Masalah

Produktivitas pembuatan garam di Indonesia yang masih rendah terutama dengan penggunaan metode tradisional. Pengembangan pengunaan metode 3D Rope Evaporator dapat membantu mengatasi laju evaporasi yang rendah dari metode tradisional menjadi lebih cepat dan efisien. Produksi garam juga dapat diteliti lebih lanjut terhadap kondisi curah hujan yang tinggi agar dapat meningkatkan produksi di masa iklim hujan.

1.3 Identifikasi Masalah

Berdasarkan latar belakang dan tema sentral pada butir sebelumnya, maka dapat dirumuskan identifikasi masalah sebagai berikut :

- 1. Pengaruh variabel suhu udara, kecepatan angin, dan kelembapan udara terhadap laju evaporasi 3D Rope Evaporator?
- Parameter dan persamaan pemodelan yang cocok digunakan untuk evaporasi 3D
 Rope Evaporator di lokasi Kupang

1.4 Premis

Premis yang akan digunakan adalah sebagai berikut :

- 1. Evaporasi akan dipengaruhi oleh suhu, %Rh, dan laju alir udara (Musy dan Higy, 2010)
- Penggunaan pemodelan Harbeck dan turunannya (Penman & Priestley-Taylor) sensitif terhadap laju alir udara dan geometri sistem yang diamati (Hall & Finch, 2001)

1.5 Hipotesis

Hipotesis yang akan digunakan adalah sebagai berikut :

- Pengaruh variabel suhu udara yang tinggi, kecepatan angin yang besar, dan kelembapan udara yang kecil akan mempercepat laju evaporasi 3D Rope Evaporator.
- Pemodelan yang cocok digunakan pada percobaan ini adalah pemodelan Penman/Priestley-Taylor dimana untuk pemodelan Harbeck akan sangat dipengaruhi dengan geometri 3D Rope Evaporator.

1.6 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Mempelajari pengaruh variabel suhu udara, kecepatan angin, dan kelembapan udara terhadap laju evaporasi 3D Rope Evaporator.
- Mempelajari validasi hasil perbandingan percobaan yang berbeda variabel pada alt
 3D Rope Evaporator.

1.7 Manfaat Penelitian

Manfaat dari penelitian ini adalah:

1. Bagi mahasiswa/peneliti:

Menjadi pengetahuan mengenai laju evaporasi khususnya variabel yang mempengaruhi, pemodelan evaporasi pada 3D Rope Evaporator, serta dapat menjadi bahan sumber penelitian selanjutnya.

2. Bagi pemerintah:

Menjadi acuan metode produksi garam yang lebih efisien dan cepat, dengan adanya pemodelan yang dapat dijadikan pegangan dalam penentuan hasil produksi terhadap kondisi iklim.

3. Bagi petani garam:

Menjadi contoh metode produksi garam yang dapat membantu produksi garam.