SKRIPSI

SEGMENTASI CITRA SATELIT GOOGLE PADA WILAYAH KELURAHAN UNTUK PEMETAAN PEMANFAATAN LAHAN

Premananda Setyo

NPM: 6181901063

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI DAN SAINS UNIVERSITAS KATOLIK PARAHYANGAN 2023

UNDERGRADUATE THESIS

GOOGLE SATELLITE IMAGE SEGMENTATION IN URBAN VILLAGE FOR LAND USE MAPPING

Premananda Setyo

NPM: 6181901063

LEMBAR PENGESAHAN

SEGMENTASI CITRA SATELIT GOOGLE PADA WILAYAH KELURAHAN UNTUK PEMETAAN PEMANFAATAN LAHAN

Premananda Setyo

NPM: 6181901063

Bandung, 28 Juni 2023

Menyetujui,

Pembimbing
Digitally signed
by Veronica Sri
Moertini

Dr. Veronica Sri Moertini

Ketua Tim Penguji

Digitally signed by Elisati Hulu

Elisati Hulu, M.T.

Anggota Tim Penguji

Digitally signed by Gede Karya

Gede Karya, M.T.

Mengetahui,

Digitally signed by Mariskha Tri
Adithia

Mariskha Tri Adithia, P.D.Eng

PERNYATAAN

Dengan ini saya yang bertandatangan di bawah ini menyatakan bahwa skripsi dengan judul:

SEGMENTASI CITRA SATELIT GOOGLE PADA WILAYAH KELURAHAN UNTUK PEMETAAN PEMANFAATAN LAHAN

adalah benar-benar karya saya sendiri, dan saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan yang berlaku dalam masyarakat keilmuan.

Atas pernyataan ini, saya siap menanggung segala risiko dan sanksi yang dijatuhkan kepada saya, apabila di kemudian hari ditemukan adanya pelanggaran terhadap etika keilmuan dalam karya saya, atau jika ada tuntutan formal atau non-formal dari pihak lain berkaitan dengan keaslian karya saya ini.

Dinyatakan di Bandung, Tanggal 28 Juni 2023

> METERAL TEMPEL A64F5AKX440737353 Premananda Setyo

NPM: 6181901063

ABSTRAK

Tingginya tingkat pertumbuhan penduduk dan adanya arus urbanisasi penduduk ke daerah perkotaan, menyebabkan adanya alih fungsi lahan menjadi lahan-lahan yang lebih produktif guna mencukupi kebutuhan ekonomi dan tempat tinggal manusia. Namun, seringkali alih fungsi lahan di perkotaan dilakukan tanpa memperhatikan RTRW yang telah ditetapkan oleh pemerintah daerah. Seperti pada penelitian-penelitian yang telah dilakukan sebelumnya, penelitian ini melanjutkan untuk melakukan analisis pemanfaatan lahan pada wilayah kelurahan-kelurahan di beberapa kota dan kabupaten di Indonesia. Penelitian ini dilakukan guna mengetahui komposisi-komposisi dan memetakan pemanfaatan lahan yang dominan di suatu wilayah kelurahan.

Pada skripsi ini, dilakukan analisis pemanfaatan lahan dan perhitungan luas dari setiap kelas pemanfaatan lahan di wilayah kelurahan dengan menggunakan pendekatan segmentasi berbasis grid. Adapun dalam penelitian ini, digunakan fitur warna dominan dan tekstur untuk melakukan analisis pemanfaatan lahan di wilayah-wilayah kelurahan yang telah diunduh data citranya dari API Google Maps. Selanjutnya, pada setiap data grid citra kelurahan, dilakukan clustering dengan menggunakan algoritma K-Means untuk mendapatkan warna dominan dari pemanfaatan lahan. Fitur tekstur juga ditambahkan untuk meningkatkan kualitas model klasifikasi untuk analisis pemanfaatan lahan. Fitur tekstur pada grid data citra kelurahan diperoleh dengan melakukan transformasi Discrete Wavelet Transform 2D (DWT 2D) pada data citra. Namun, dikarenakan hasil transformasi DWT 2D merupakan data citra, dilakukan penyederhaan fitur untuk mempercepat komputasi dan meningkatkan akurasi model klasifikasi, di mana dilakukan perhitungan GLCM terhadap data grid citra hasil transformasi DWT 2D untuk memperoleh fitur tekstur.

Selanjutnya, setelah dilakukan proses feature engineering dengan mengubah data citra ke dalam bentuk warna dominan dan fitur tekstur, dilakukan analisis pemanfaatan lahan dengan menggunakan model klasifikasi Random Forest. Model ensemble dipilih dikarenakan tidak mudah terpengaruh terhadap data-data outlier. Pada penelitian ini, digunakan 2 buah model klasifikasi Random Forest untuk menganalisis wilayah kelurahan di kabupaten dan perkotaan. Untuk model analisis pemanfaatan lahan di wilayah kabupaten, diperoleh akurasi model sebesar 86%. Sementara, untuk model analisis pemanfaatan lahan di wilayah perkotaan, diperoleh akurasi sebesar 81%. Pada penelitian ini juga dibangun perangkat lunak berbasis web untuk menampilkan hasil analisis perhitungan luas pemanfaatan lahan berdasarkan kelas-kelas segmentasi pemanfaatan lahan di level abstraksi tertentu.

Kata-kata kunci: Segmentasi Citra, Grid, Tipe Pemanfaatan Lahan, Citra Satelit, Clustering, K-Means, Klasifikasi, Random Forest, Warna Dominan, Tekstur, Discrete Wavelet Transform 2D, Grey Level Co-Occurrence Matrix

ABSTRACT

The high population growth rate and the influx of population migration to urban areas have resulted in the conversion of land for more productive purposes to meet economic and human residential needs. However, land conversion in urban areas often occurs without considering the Regional Spatial Planning (RTRW) established by local governments. Building upon previous studies, this research continues to analyze land utilization in neighborhood areas in several cities and regencies in Indonesia. The purpose of this study is to determine the compositions and map the dominant land utilization in a neighborhood area.

In this undergraduate thesis, an analysis of land utilization and the calculation of the area for each land utilization class in neighborhood areas are conducted using a grid-based segmentation approach. In this research, dominant color and texture features are utilized to analyze land utilization in the downloaded image data of neighborhood areas from the Google Maps API. Subsequently, clustering is performed on each neighborhood's image grid data using the K-Means algorithm to obtain the dominant colors representing land utilization. Texture features are also added to enhance the classification model's quality for land utilization analysis. Texture features on the neighborhood image grid data are obtained by applying the 2D Discrete Wavelet Transform (DWT 2D) to the image data. However, since the output of the DWT 2D is image data, feature simplification is carried out to expedite computation and improve the classification model's accuracy, wherein the Grey Level Co-Occurrence Matrix (GLCM) is computed for the grid image data resulting from the 2D Discrete Wavelet Transform to obtain texture features.

Furthermore, after the feature engineering process of transforming the image data into dominant colors and texture features, land utilization analysis is conducted using a Random Forest classification model. The ensemble model is chosen because it is less susceptible to the influence of outlier data. In this study, two Random Forest classification models are employed to analyze neighborhood areas in regencies and urban areas. The land utilization analysis model in the regency area achieves a model accuracy of 86%, while the land utilization analysis model in the urban area achieves an accuracy of 81%. Additionally, a web-based software is developed in this research to display the results of land utilization area calculations based on land utilization segmentation classes at a specific abstraction level.

Keywords: Image Segmentation, Grid, Land Cover Type, Satellite Imagery, Clustering, K-Means, Random Forest, Dominant Color, Texture, Discrete Wavelet Transform 2D, Grey Level Co-Occurrence Matrix

Dipersembahkan untuk kedua orang tua, dosen-dosen, kemajuan ilmu pengetahuan, dan seluruh pihak yang mendukung	<i>i</i>

KATA PENGANTAR

Puji syukur Penulis panjatkan ke hadirat Tuhan Yang Maha Esa, atas berkat-Nya penulis dapat menyelesaikan skripsi ini dengan baik. Skripsi ini dibuat sebagai salah satu syarat untuk menyelesaikan Pendidikan di Program Studi Teknik Informatika, Fakultas Teknologi Informasi dan Sains (FTIS), Universitas Katolik Parahyangan. Dalam penyusunan skripsi ini tentunya ada hambatan dan rintangan yang dilalui. Oleh karena itu, Penulis ingin mengucapkan terima kasih sebesar-besarnya atas dukungan dan bantuan telah diberikan oleh berbagai pihak, sebagai berikut:

- 1. Orang tua Penulis, yang selalu mendoakan dan memberikan dukungan pada penulis dalam menyelesaikan skripsi ini;
- 2. Ibu Dr. Veronica Sri Moertini selaku dosen pembimbing yang telah memberikan ilmu, waktu, pengalaman, bimbingan, dan kesabaran dalam memberikan arahan untuk menyelesaikan skripsi ini;
- 3. Teman-teman yang tidak dapat disebutkan satu persatu yang telah memberikan dukungan dalam menyelesaikan skripsi ini.

Sebagai penutup, Penulis berterima kasih juga kepada pembaca dokumen skripsi ini. Penulis berharap bahwa penelitian yang dilakukan dapat berkontribusi terhadap pengetahuan para pembaca, kemajuan ilmu pengetahuan, dan dapat menjadi referensi yang baik untuk penelitian-penelitian serupa di masa depan. Tidak lupa Penulis juga memohon maaf jika terdapat kesalahan dalam penulisan, sistematika, atau metode pada skripsi ini. Penulis sangat terbuka untuk menerima masukan dan saran dari pembaca terhadap penelitian ini.

Bandung, Juni 2023

Penulis

DAFTAR ISI

K	ATA I	Pengantar	X
D	AFTA	R ISI	$\mathbf{x}\mathbf{v}$
D	AFTA	R GAMBAR	xx
D	AFTA	R TABEL	XX
D	AFTA	R KODE PROGRAM	xxi
1	PEN	IDAHULUAN	
	1.1	Latar Belakang	
	1.2	Rumusan Masalah	
	1.3	Tujuan	
	1.4	Batasan Masalah	
	1.5	Metodologi	
	1.6	Sistematika Pembahasan	
2	LAN	IDASAN TEORI	
	2.1	Klasifikasi Tipe Pemanfaatan Lahan	
	2.2	Image $Processing[1]$	
	2.3	Citra Satelit	1
	2.4	Model Warna [2, 3]	1
		2.4.1 Model Warna RGB (Red, Green, Blue)	1
		2.4.2 Model Warna HSV (Hue, Saturation, Value)	1
	2.5	Big Data	1
	2.6	Hadoop [4]	1
		2.6.1 Spark [5]	1
	2.7	Algoritma Klasifikasi dan Clustering Untuk Segmentasi	
		2.7.1 Klasifikasi	2
		2.7.2 Clustering [6]	
	2.8	Tekstur	3
		2.8.1 Discrete Wavelet Transform 2D (DWT 2D)[3]	
		2.8.2 GLCM (Grey Level Co-ocurence Matrix)[3]	
	2.9	Visualisasi Data	3
		2.9.1 Tabel[7]	3
		2.9.2 Horizontal Bar Chart[7]	
		2.9.3 $Dasymetric Map[8] \dots \dots$	3
	2.10	Data Warehouse[6]	3
3	EKS	SPLORASI DATA, TEKNOLOGI, DAN PEMODELAN TAHAP AWAL	4
	3.1	Eksplorasi Data	4
	3.2	Pembuatan Program Untuk Labeling Tipe Pemanfaatan Lahan Pada Data Citra .	5

	3.3		natan Data <i>Train</i> Untuk Pemodelan Tahap Awal	54
	3.4		delan Tahap Awal Untuk Segmentasi Tipe Pemanfaatan Lahan Berdasarkan	-0
	0.5		Satelit	56
	3.5		Program Labeling Image Untuk Pembuatan Data Train Model Klasifikasi	co
			Analisis Pemanfaatan Lahan	60
		$3.5.1 \\ 3.5.2$	Fitur Perangkat Lunak	60 60
		3.5.2 $3.5.3$	Diagram <i>Use Case</i> Perangkat Lunak <i>Labeling Image</i>	64
		3.5.4	Hasil Pengolahan Fitur Perangkat Lunak Labeling Image	65
	3.6		orasi Teknologi Big Data Dengan Menggunakan Spark Untuk Klasifikasi	79
4	PEN	JCHMP	ULAN DATA CITRA SATELIT, PENYIAPAN DATA, DAN EVALUASI PE-	
•		DELAN	OBAN DAIA CITICA SAIEBIT, I ENTIATAN DAIA, DAN EVABOASI I E-	87
	4.1		mpulan Data Citra Satelit	87
		4.1.1	Mengunduh Data Koordinat Batas Kelurahan[9]	88
		4.1.2	Menentukan Koordinat Ujung Dari Batas Wilayah Kelurahan[10]	90
		4.1.3	Mengkonversi Koordinat Ujung-ujung $Tile$ Menjadi Koordinat $Tile[10]$	91
		4.1.4	Penyesuaian Koordinat Latitude dan Longitude Untuk Pengunduhan Ujung	
			Data Citra Satelit Berdasarkan Tile[10]	92
		4.1.5	Mengkonversi Koordinat Latitude dan Longitude ke Koordinat Pixel	93
		4.1.6	Pemotongan Data Citra Satelit Sesuai Batasan Kelurahan[10]	94
		4.1.7	Pemotongan Data Citra Satelit Ke Dalam <i>Tile</i>	96
		4.1.8	Pembuatan Metadata Tiap <i>Tile</i> Citra Satelit Kelurahan[10]	97
		4.1.9	Permasalahan Dalam Proses Pengumpulan Data	99
	4.2	Penyia	ipan Data	100
		4.2.1	Membaca Data Tile Citra Berukuran 256x256 Pixel	100
		4.2.2	Melakukan Pemotongan Data Tile Citra Kelurahan Ke Dalam Grid	101
		4.2.3	Melakukan Konversi Data Warna Gambar Ke Dalam Bentuk HSV dan RGB	105
		4.2.4	Melakukan Clustering K-Means Untuk Mendapatkan Warna Dominan dan	
			Persentasenya	106
		4.2.5	Pembuatan Fitur Tekstur Dengan $Discrete\ Wavelet\ Transform\ 2D\ \dots$	115
		4.2.6	Pembuatan Fitur Tekstur Statistikal dengan GLCM (Gray Level Co-Occurence	
			<i>Matrix</i>)	118
		4.2.7	Permasalahan Dalam Proses Penyiapan Data	120
		4.2.8	Daftar Kelurahan yang Berhasil Dilakukan <i>Pre-Processing</i>	121
	4.3		apan Data <i>Train</i> Untuk Model Klasfikasi Untuk Analisis Tipe Pemanfaatan	
				127
	4.4		is dan Evaluasi Penggunaan Model Klasfikasi Untuk Analisis Tipe Pemanfaatan	
		Lahan		131
		4.4.1	Membaca Dataset Training Untuk Proses Train Model	132
		4.4.2	Melakukan Tuning Hyperparameter dan Evaluasi Performansi Model Klasifi-	100
		4.4.0	kasi Random Forest	133
		4.4.3	Analisis dan Evaluasi Pemanfaatan Model Klasifikasi Untuk Analisis Peman-	- 1 1 1
		4 4 4	faatan Lahan Di Wilayah Kelurahan Tahap Pertama	144
		4.4.4	Analisis dan Evaluasi Pemanfaatan Model Klasifikasi Untuk Analisis Peman-	1.40
	4.5	Evalua	faatan Lahan Di Wilayah Kelurahan Setelah Dilakukan <i>Undersampling</i> asi Perhitungan Luas Pemanfaatan Lahan Dari Hasil Segmentasi Citra Kelurahan	148 155
5				
U	NYA		NGAN PERANGKAT LUNAK, Data Warehouse, DAN IMPLEMENTASI-	157
	5.1		Perangkat Lunak	157 157
			am Hee Case	150

	5.3	Perancangan Antarmuka	161
		5.3.1 Halaman General Monitoring	161
		5.3.2 Halaman Detail Monitoring	163
	5.4	Perancangan Skema Data Warehouse	164
	5.5	Perhitungan Luas Pemanfaatan Lahan Berdasarkan Hasil Analisis Pemanfaatan	
		Lahan	165
	5.6	Implementasi Halaman Antarmuka	166
		5.6.1 Halaman General Monitoring	166
		5.6.2 Halaman Detail Monitoring	167
6	KES	SIMPULAN DAN SARAN	169
	6.1	Kesimpulan	169
	6.2	Saran	171
D	AFTA	AR REFERENSI	173
A	Ko	DE PROGRAM	175
В	HA	SIL EKSPERIMEN	219

DAFTAR GAMBAR

1.1	Segmentasi tutupan lahan menggunakan citra satelit
2.1	Metode segmentasi dengan thresholding
2.2	Metode segmentasi dengan <i>clustering</i>
2.3	Sistem koordinat latitude dan longitude
2.4	Proyeksi Mercator
2.5	Koordinat x dan y pada proyeksi peta Google Maps
2.6	Sistem pengalamatan tile pada peta Google Maps
2.7	Perbesaran tile pada peta Google Maps
2.8	Model warna RGB
2.9	Model warna HSV
2.10	Karakteristik big data
2.11	Arsitektur Hadoop
2.12	Model pemrograman MapReduce
2.13	Komponen dan API pada Spark
2.14	Arsitektur Spark
2.15	Narrow Transformation dan Wide Transformation
2.16	Ilustrasi model decision tree
2.17	Ilustrasi model random forest
2.18	Confusion matrix
2.19	Ilustrasi model K-Means
2.20	Citra asli tile Kelurahan Ancol nomor 22
2.21	Contoh hasil transformasi DWT 2D
2.22	Ilustrasi data citra asli I sebelum dilakukan DWT 2D
2.23	Ilustrasi data citra asli I setelah dilakukan scaling secara horizontal
2.24	lustrasi data citra asli I setelah dilakukan Wavelet Transform secara horizontal 33
2.25	Ilustrasi penggabungan data citra hasil Scaling dan Wavelet Transform secara horizontal
2.26	Ilustrasi proses vertikal Scaling
2.27	Ilustrasi proses vertikal Wavelet Transform
	Hasil akhir citra setelah melewati proses transformasi Discrete Wavelet Transform 2D 33
2.29	Sudut pengerjaan GLCM dengan distance 1
2.30	Contoh komputasi GLCM
2.31	Contoh tabel yang baik
2.32	Arah manusia membaca membentuk pola huruf z
2.33	Contoh horizontal bar chart
2.34	Contoh dasymetric map
2.35	Ilustrasi star schema pada data warehouse penelitian ini
3.1	Proses penyatuan <i>tile</i> citra kelurahan menjadi citra kelurahan utuh
3.2	Hasil citra kelurahan setelah disatukan
3.3	Cacat akibat data corrupt pada Kelurahan Alasmalang

3.4	Jumlah baris data yang tidak lengkap karena Corrupt	44
3.5	Noise warna pada data citra satelit kelurahan yang telah dikumpulkan di cluster HDFS	45
3.6	Citra satelit dengan perbesaran yang terlalu kecil untuk wilayah padat penduduk .	46
3.7	Banyaknya bangunan dengan warna dominan serupa namun berbeda tipe pemanfa-	
	atan lahan	47
3.8	Perbedaan warna dominan dari lahan pertanian	48
3.9	Perbedaan warna dominan atap dari bangunan non-industri	49
3.10	Perbedaan warna dominan atap dari bangunan industri	50
3.11	Perbedaan warna dominan dari air tambak	50
	Perbedaan warna dominan dari wilayah perairan	51
	Perbedaan warna jalan dari tipe pemanfaatan lahan transportasi	51
	Tampilan UI program untuk labeling	53
	Contoh dataset feature engineering dengan model warna RGB hasil labeling	54
	Contoh dataset feature engineering dengan model warna HSV hasil labeling	54
	Diagram use case Labeling Image	61
	Antarmuka program Labeling Image setelah revisi	65
0.20	Timodrinana program Eurosing Image Several Tevisi I I I I I I I I I I I I I I I I I I	00
4.1	Alur pengunduhan data	88
4.2	Data batas wilayah kelurahan dalam format JSON	90
4.3	Titik Merah Merupakan Ilustrasi Koordinat Ujung <i>Tile</i>	91
4.4	Ilustrasi menentukan penyesuaian ujung-ujung koordinat kelurahan yang diunduh tile	92
4.5	Ilustrasi penyesuaian lebar dan tinggi gambar sesuai dengan koordinat pixel	94
4.6	Ilustrasi masking berdasarkan kontur	95
4.7	Gambar hasil akhir proses pemotongan berdasarkan batas kelurahan	95
4.8	Ilustrasi pemotongan citra kelurahan utuh menjadi <i>tile</i> citra kelurahan	96
4.9	Hierarki penyimpanan data <i>tile</i> citra kelurahan	97
4.10		100
4.11	Ilustrasi pembacaan data tile Citra kelurahaan menggunakan Opency	101
	Pemotongan data tile citra ke dalam grid 4x4 pixel	101
	Pemotongan data tile citra kelurahan kabupaten ke dalam grid 8x8 pixel	102
	Pemotongan data <i>tile</i> citra kelurahan perkotaan ke dalam <i>grid</i> 4x4 <i>pixel</i>	103
	Pemotongan data <i>tile</i> citra kelurahan perkotaan ke dalam <i>grid</i> 8x8 <i>pixel</i>	103
	Pemotongan data <i>tile</i> citra kelurahan perkotaan ke dalam <i>grid</i> 16x16 <i>pixel</i>	104
	Illustrasi clustering dalam grid	106
	Ilustrasi centroid (+) pada K-Means tertarik ke warna pemanfaatan lahan pertanian	100
1.10	(hijau muda) pada saat mendeteksi perumahan (jingga)	107
4 19	Hasil Metode <i>elbow</i> dari beberapa <i>grid</i> citra kelurahan di wilayah kabupaten	108
	Hasil metode elbow dari beberapa grid citra kelurahan di wilayah kabupaten (2) .	109
	Hasil metode elbow dari beberapa grid citra kelurahan di wilayah perkotaan	111
	Hasil metode $elbow$ dari beberapa $grid$ citra kelurahan di wilayah perkotaan (2)	112
	Ilustrasi perbedaan warna tipe pemanfaatan lahan RTH dan pertanian	$112 \\ 115$
	Citra asli tile Kelurahan Ancol nomor 22	116
	Contoh hasil transformasi DWT 2D	117
	Sudut pengerjaan GLCM dengan distance 1	119
4.21	Flowchart tahapan penyiapan data train untuk model analisis tipe pemanfaatan lahan di wilayah kelurahan	128
4.28	Flowchart tahapan analisis dan evaluasi model klasifikasi untuk analisis pemanfaatan	
	lahan	132
4.29	Ilustrasi kesalahan hasil segmentasi berdasarkan tipe pemanfaatan lahan di wilayah	
	kahupaten	145

4.30	Ilustrasi citra kelurahan hasil segmentasi berdasarkan tipe pemantaatan lahan di wilayah kabupaten	146
4.31	Ilustrasi citra kelurahan hasil segmentasi berdasarkan tipe pemanfaatan lahan di	110
1.01	wilayah perkotaan	147
4.32	Ilustrasi kesalahan hasil segmentasi berdasarkan tipe pemanfaatan lahan di wilayah	
	perkotaan	148
4.33	Ilustrasi perbandingan hasil segmentasi sebelum dan setelah dilakukan <i>undersampling</i>	
	untuk model kabupaten	150
4.34	Ilustrasi perbandingan hasil segmentasi sebelum dan setelah dilakukan <i>undersampling</i>	
	untuk model kabupaten (2)	151
4.35	Ilustrasi perbandingan hasil segmentasi sebelum dan setelah dilakukan <i>undersampling</i>	
1.00	untuk model perkotaan	153
4.36	Ilustrasi perbandingan hasil segmentasi sebelum dan setelah dilakukan <i>undersampling</i>	100
2.00	untuk model perkotaan (2)	154
	untuk model perketaan (2)	101
5.1	Diagram use case LCMS	159
5.2	Mockup antarmuka halaman General Monitoring	161
5.3	Mockup antarmuka halaman General Monitoring setelah menentukan tingkat agregat	
	analisis pemanfaatan lahan dan mencari nama wilayah yang ingin dianalisis tipe	
	pemanfaatan lahannya	162
5.4	Mockup antarmuka halaman Detail Monitoring setelah melakukan pencarian wilayah	
	kelurahan yang ingin dilihat analisis pemanfaatan lahannya	163
5.5	ERD data warehouse dengan fact table dataSegmentasi	164
5.6	ERD data warehouse dengan fact table dataCitra	165
5.7	Antarmuka halaman General Monitoring sebelum melakukan pencarian wilayah yang	
	ingin dilihat analisis pemanfaatannya	166
5.8	Antarmuka halaman General Monitoring setelah melakukan pencarian wilayah yang	
	ingin dilihat analisis pemanfaatannya	166
5.9	Antarmuka halaman General Monitoring setelah melakukan pencarian wilayah yang	
	ingin dilihat analisis pemanfaatannya (2)	167
5.10	Antarmuka halaman <i>Detail Monitoring</i> sebelum melakukan pencarian wilayah yang	
	ingin dilihat analisis pemanfaatannya	167
5.11	Antarmuka halaman Detail Monitoring setelah melakukan pencarian wilayah yang	
	ingin dilihat analisis pemanfaatannya	168
	Antarmuka halaman Detail Monitoring setelah melakukan pencarian wilayah yang	100
	ingin dilihat analisis pemanfaatannya (2)	168
	S	
B.1	Ilustrasi perbandingan citra Kelurahan Kalihurip sebelum dan setelah disegmentasi	219
B.2	Ilustrasi perbandingan citra Kelurahan Jatimekar sebelum dan setelah disegmentasi	220
B.3	Ilustrasi perbandingan citra Kelurahan Cemarajaya sebelum dan setelah disegmentasi	220
B.4	Ilustrasi perbandingan citra Kelurahan Balongsari sebelum dan setelah disegmentasi	221
B.5	Ilustrasi perbandingan citra Kelurahan Bantarjaya sebelum dan setelah disegmentasi	221
B.6	Ilustrasi perbandingan citra Kelurahan Ancol sebelum dan setelah disegmentasi	222
B.7	Ilustrasi perbandingan citra Kelurahan Babakan Ciamis sebelum dan setelah dise-	
	gmentasi	223
B.8	Ilustrasi perbandingan citra Kelurahan Husein Sastranegara sebelum dan setelah	
	disegmentasi	223
B.9	Ilustrasi perbandingan citra Kelurahan Arjuna sebelum dan setelah disegmentasi .	224
B.10	Ilustrasi perbandingan citra Kelurahan Cimenerang sebelum dan setelah disegmentasi	224
B.11	Ilustrasi perbandingan citra Kelurahan Babakan Penghulu sebelum dan setelah	
	disagmentasi	225

DAFTAR TABEL

2.1	Keterangan Notasi Akurasi, Presisi, Recall, dan F1-Score	28
2.2	Keterangan Notasi DWT 2D	32
2.3	Keterangan Notasi GLCM	36
2.4	Perbedaan Database Transaksional Dengan Data Warehouse	39
3.1	Deskripsi Dataset	41
3.2	Deskripsi Kelas Segmentasi Untuk Klasifikasi	48
3.3	Deskripsi Atribut Hasil Transformasi Data RGB Dengan Program	53
3.4 3.5	Deskripsi Atribut Hasil Transformasi Data HSV Dengan Program	54
	Labeling	55
3.6	Metriks Evaluasi Klasifikasi Random Forest Dengan Fitur RGB	57
3.7	Confusion Matrix Model Klasifikasi Random Forest Dengan Fitur RGB	58
3.8	Metriks Evaluasi Klasifikasi Random Forest Dengan Fitur HSV	59
3.9	Confusion Matrix Model Klasifikasi Random Forest Dengan Fitur HSV	60
3.17	Deskripsi Atribut Hasil Transformasi Data RGB Dengan Program Labeling Image	65
3.18	Deskripsi Atribut Hasil Transformasi Data HSV Dengan Program Labeling Image .	72
3.19	Jumlah Data <i>Train</i> Untuk Model Analisis Pemanfaatan Lahan Kelurahan di Wilayah	
	Kabupaten	82
3.20	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Hyperparameter	
	numTree 100 Sampai 1200 Dengan maxDepth 4 di Pyspark	83
3.21	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Hyperparameter	
	maxDepth 5 Sampai 30 Dengan numTrees 600 di Pyspark	83
3.22	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Hyperparameter	0.0
0.00	Impurity Dengan numTrees 600 dan maxDepth 25 di Pyspark	83
3.23	Jumlah Data <i>Train</i> Untuk Model Analisis Pemanfaatan Lahan Kelurahan di Wilayah Perkotaan	84
3.24	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Hyperparameter numTree 100 Sampai 1200 Dengan maxDepth 4 di Pyspark	84
3.25	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Hyperparameter maxDepth 5 Sampai 30 Dengan numTrees 800 di Pyspark	85
3.26	Hasil Pengukuran Metrik Klasifikasi Random Forest Dengan Tuning Parameter	
J. _	Impurity Dengan numTrees 800 dan maxDepth 25 di Pyspark	85
4.1	Parameter Pengunduhan Data KelDesa_10K di REST API Badan Geospatial Indonesia	89
4.2	Informasi Metadata dari Data KelDesa 10K	89
4.3	Parameter yang Digunakan Untuk Konversi Koordinat Latitude dan Longitude Dari	
	Ujung Kelurahan ke Bentuk Koordinat Tile	91
4.4	Parameter yang Digunakan Untuk Penyesuaian Koordinat Latitude dan Longitude	0 1
	Dari Ujung Kelurahan Agar Sesuai Dengan ukuran <i>Tile</i>	93
4.5	Parameter yang Digunakan Untuk Konversi Koordinat Latitude dan Longitude Men-	
	jadi Koordinat Pixel	93

4.6	Informasi Atribut Kolom Metadata	97
4.7	Daftar Kelurahan yang Mengalami Kegagalan Dalam Pengunduhan	99
4.8	Parameter Fungsi Buat Tile	105
4.9	Hasil Nilai Elbow K Berdasarkan Percobaan Grid Data Citra Kelurahan Kabupaten	109
4.10	Hasil Nilai Elbow K Berdasarkan Percobaan Grid Data Citra Data Citra Kelurahan	
	Perkotaan	112
4.11	Parameter Fungsi Clustering 3 Warna Dominan Dari Data Grid Citra Kelurahan .	113
4.12	Parameter Fungsi getDWT2D Untuk Ekstrasksi Fitur Tekstur Dari Data Grid Citra	
	Kelurahan	118
4.13	Parameter Fungsi Untuk Mendapatkan Fitur GLCM Dari Data Grid Citra Kelurahan	120
4.14	Daftar Kota/Kabupaten yang Datanya Disiapkan Untuk Dianalisis Pemanfaatan	
	Lahannya	121
4.15	Daftar Kelurahan di Kabupaten Bandung Barat yang Datanya Telah Berhasil Disi-	
	apkan Pada Tahapan Penyiapan Data	121
4.16	Daftar Kelurahan di Kabupaten Bekasi yang Datanya Telah Berhasil Disiapkan Pada	
	Tahapan Penyiapan Data	123
4.17	Daftar Kelurahan di Kabupaten Cianjur yang Datanya Telah Berhasil Disiapkan	
	Pada Tahapan Penyiapan Data	123
4.18	Daftar Kelurahan di Kabupaten Karawang yang Datanya Telah Berhasil Disiapkan	
1,10	Pada Tahapan Penyiapan Data	124
4 19	Daftar Kelurahan di Kabupaten Purwakarta yang Datanya Telah Berhasil Disiapkan	
1,10	Pada Tahapan Penyiapan Data	125
4 20	Daftar Kelurahan di Kota Bandung yang Datanya Telah Berhasil Disiapkan Pada	120
1.20	Tahapan Penyiapan Data	126
<i>1</i> 91	Daftar Kelurahan di Kota Depok yang Datanya Telah Berhasil Disiapkan Pada	120
7.21	Tahapan Penyiapan Data	127
1 22	Daftar Kelurahan di Kota Banjar yang Datanya Telah Berhasil Disiapkan Pada	121
1.22	Tahapan Penyiapan Data	127
4 23	Detail Data Tile Citra Kelurahan yang Digunakan Untuk Dataset Train Model	121
1.20	Klasifikasi Kabupaten	128
4 24	Jumlah Dataset Train Untuk Model Analisis Pemanfaatan Lahan Kelurahan di	120
1.21	Wilayah Kabupaten	129
4 25	Detail Data Tile Citra Kelurahan yang Digunakan Untuk Dataset Train Model	120
1.20	Klasifikasi Perkotaan	130
4 26	Jumlah Record Data Train Untuk Model Analisis Pemanfaatan Lahan Kelurahan di	100
1.20	Wilayah Perkotaan	131
1 27	Detail Nama File Dataset Training Model Klasifikasi	133
	Hasil Evaluasi Tuning Hyperparameter n_estimator Pada Model Random Forest	100
4.20	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna HSV	134
4 20	Hasil Evaluasi Tuning Hyperparameter max_depth Pada Model Random Forest	104
4.23	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna HSV	135
4.30	Hasil Evaluasi Tuning Hyperparameter criterion Pada Model Random Forest Untuk	100
4.00	Prediksi Test Set Data Kabupaten Dengan Model Warna HSV	135
4 21	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	199
4.31		195
1 90	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna HSV	135
4.32	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	196
1 99	Untuk Prediksi Train Set Data Kabupaten Dengan Model Warna HSV	136
4.00	Hasil Evaluasi Tuning Hyperparameter n_estimators Pada Model Random Forest	196
191	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna RGB	136
4.04	Hasil Evaluasi Tuning Hyperparameter max_depth Pada Model Random Forest	197
	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna RGB	137

4.35	Hasil Evaluasi Tuning Hyperparameter criterion Pada Model Random Forest Untuk	
	Prediksi Test Set Data Kabupaten Dengan Model Warna RGB	137
4.36	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	
	Untuk Prediksi Test Set Data Kabupaten Dengan Model Warna RGB	138
4.37	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random	
	Forest Untuk Prediksi Train Set Data Kabupaten Dengan Model Warna RGB	138
4.38	Hasil Evaluasi <i>Tuning Hyperparameter</i> n_estimators Pada Model <i>Random Forest</i>	
	Untuk Prediksi Test Set Data Kota Dengan Model Warna HSV	138
4.39	Hasil Evaluasi Tuning Hyperparameter max_depth Pada Model Random Forest	
	Untuk Prediksi <i>Test Set</i> Data Kota Dengan Model Warna HSV	139
4 40	Hasil Evaluasi Tuning Hyperparameter criterion Pada Model Random Forest Untuk	100
1.10	Prediksi Test Set Data Kota Dengan Model Warna HSV	140
1 11	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	140
4.41		140
4 49	Untuk Prediksi <i>Test Set</i> Data Kota Dengan Model Warna HSV	140
4.42	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	1.40
4 40	Untuk Prediksi <i>Train Set</i> Data Kota Dengan Model Warna HSV	140
4.43	Hasil Evaluasi Tuning Hyperparameter n_estimators Pada Model Random Forest	
	Untuk Prediksi Test Set Data Kota Dengan Model Warna RGB	141
4.44	Hasil Evaluasi Tuning Hyperparameter max_depth Pada Model Random Forest	
	Untuk Prediksi Test Set Data Kota Dengan Model Warna RGB	141
4.45	Hasil Evaluasi Tuning Hyperparameter criterion Pada Model Random Forest Untuk	
	Prediksi Test Set Data Kota Dengan Model Warna RGB	142
4.46	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	
	Untuk Prediksi Test Set Data Kota Dengan Model Warna RGB	142
4.47	Hasil Evaluasi Tuning Hyperparameter min_samples_leaf Pada Model Random Forest	
	Untuk Prediksi <i>Train Set Data Kota Dengan Model Warna RGB</i>	143
4.48	Confusion Matrix Test Set Dari Model Random Forest Kabupaten Dengan Model	
	Warna HSV	143
4.49	Confusion Matrix Terhadap Test Set Model Random Forest Perkotaan Dengan Model	
	Warna HSV	144
4.50	Jumlah Record Dataset Training Kabupaten Setelah Di Undersampling	149
	Hasil Evaluasi Model Random Forest Untuk Analisis Pemanfaatan Lahan Dari	
	Kelurahan Di Wilayah Kabupaten Setelah Dilakukan <i>Undersampling</i>	149
4.52	Confusion Matrix Terhadap Test Set Dari Model Klasifikasi Random Forest Untuk	_
	Analisis Pemanfaatan Lahan Kelurahan Di Kabupaten Setelah Dilakukan <i>Undersam</i> -	
	pling	149
1 53	Jumlah Record Dataset Training Perkotaan Setelah Di Undersampling	152
	Hasil Evaluasi Model Random Forest Untuk Analisis Pemanfaatan Lahan Dari	102
4.04	Kelurahan Di Wilayah Perkotaan Setelah Dilakukan <i>Undersampling</i>	152
1 55	• •	102
4.00	Confusion Matrix Terhadap <i>Test Set</i> Dari Model Klasifikasi <i>Random Forest</i> Untuk Analisis Pemanfaatan Lahan Kelurahan Di Perkotaan Setelah Dilakukan <i>Undersam</i> -	
		150
1 56	pling	152
4.00	Evaluasi Fermitungan Luas nash Segmentasi Dengan Luas Aktual	155
5.1	Tabel Pembagian Fitur Berdasarkan Halaman	157

DAFTAR KODE PROGRAM

3.1	Kode untuk mengunduh citra satelit dari HDFS			
3.2 3.3	Kode untuk menyatukan tile-tile citra kelurahan Kode untuk melakukan tuning hyperparameter pada random forest Pyspark	42 79		
4.1	Kode untuk memotong data <i>tile</i> citra kelurahan menjadi <i>grid</i>	105		
4.2	Kode untuk konversi warna BGR ke RGB dan HSV	105		
4.3	Kode untuk mencari 3 warna dominan beserta persentasenya berdasarkan data $grid$			
	citra kelurahan	114		
4.4	Kode untuk transformasi $grid$ citra kelurahan menggunakan DWT2D	118		
4.5	Kode untuk mendapatkan fitur-fitur hasil GLCM berdasarkan grid citra hasil DWT2D	120		
4.6	Kode untuk membaca data <i>train</i>	133		
5.1	Kode untuk menghitung luas pemanfaatan lahan di wilayah kelurahan berdasarkan			
0.1	tipe pemanfaatan lahannya	165		
A.1	UnduhJSON.py	175		
A.2	UnduhCitra.py	176		
A.3	buatMetaData.py	181		
A.4	LabelingIng.py	184		
A.5	makeSegmentationData.py	193		
A.6	makeAnalisisData.py	197		
A.7	bikinHasilSegmentasi.py	200		
A.8	DBInsert.py	$\frac{200}{202}$		
	tuningRF.py	202		
		200		
	modelCM py	$\frac{210}{210}$		
	modelGM.py	$\frac{210}{210}$		
	ViewDM.py			
	ViewGM.py	211		
	ViewDM.html	213		
A.15	ViewGM.html	215		

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Tingginya tingkat pertumbuhan penduduk dan urbanisasi penduduk ke daerah perkotaan telah menyebabkan banyaknya alih fungsi lahan di kota-kota besar di Indonesia. Alih fungsi lahan di kota-kota besar kebanyakan dilakukan untuk mencukupi kebutuhan tempat tinggal masyarakat di perkotaan. Namun, terkadang alih fungsi lahan untuk area perumahan di perkotaan tidak sesuai dengan rencana tata ruang dan wilayah (RTRW) yang telah ditetapkan oleh pemerintah daerah. Oleh karena itu, alih fungsi lahan dapat menimbulkan permasalahan tersendiri bagi masyarakat perkotaan khususnya menimbulkan dampak bagi lingkungan dan kehidupan masyarakat sekitar. Alih fungsi lahan tanpa memperhatikan rencana tata ruang dan wilayah (RTRW) yang berlaku dapat mempengaruhi tingkat ketahanan pangan suatu daerah dan dapat menimbulkan bencana ekologis di lingkungan sekitar. Namun, di sisi lain alih fungsi lahan yang bersesuaian dengan peningkatan pembangunan infrastruktur daerah dan sesuai dengan peruntukkan topografi lahannya, dapat membawa manfaat di mana dapat meningkatkan pendapatan dan standar hidup masyarakat, meningkatkan perekonomian daerah, serta dapat menekan tingkat pengangguran di suatu daerah.

Menurut Rizqi Wardiana Sari dan Eppy Yuliani dalam artikelnya yang berjudul "Identifikasi Dampak Alih Fungsi Lahan Pertanian ke Non Pertanian Untuk Perumahan [11], terdapat beberapa faktor yang menyebabkan alih fungsi lahan, diantaranya adalah peningkatan jumlah penduduk yang tidak berbanding lurus dengan kebutuhan lahan untuk aktivitas masyarakat (untuk perdagangan, industri, dan untuk pembangunan fasilitas umum pendukung lainnya), adanya kenaikan nilai tanah seiring dengan berkembangnya infrastruktur pendukung ke daerah tersebut, rendahnya pendapatan di sektor pertanian yang mendorong masyarakat untuk memilih meninggalkan lahan pertanian dan melakukan alih fungsi lahan untuk kegiatan usaha lainnya, adanya degradasi lingkungan (musim tidak menentu sehingga menyebabkan lahan pertanian kering) dan infrastruktur pertanian (irigasi) yang tidak mendukung sehingga menyebabkan kegiatan pertanian semakin tidak menguntungkan. Selain itu, dikarenakan lemahnya pengawasan pemerintah daerah terhadap pemanfaatan ruang sehingga menyebabkan adanya penyalahgunaan lahan yang tidak merujuk pada rencana tata ruang dan wilayah (RTRW) yang telah ditetapkan pemerintah daerah setempat juga menyebabkan alih fungsi lahan di area perkotaan semakin banyak dilakukan dan menjadi tidak terkendali. Dikarenakan banyaknya alih fungsi lahan tanpa merujuk pada rencana tata ruang dan wilayah (RTRW), melalui penelitian ini diharapkan dapat menghadirkan sebuah solusi yang dapat mempermudah pengawasan pemanfaatan lahan bagi pemerintah.

Bab 1. Pendahuluan

Gambar 1.1: Perbedaan hijau pada sawah dengan RTH yang berbeda

Salah satu cara untuk mempermudah pemantauan penggunaan lahan untuk membatasi alih fungsi lahan agar tetap sesuai dengan ketentuan rencana tata ruang dan wilayah (RTRW) yang berlaku adalah dengan memanfaatkan data citra satelit. Citra satelit merupakan hasil tangkapan mengenai kondisi permukaan bumi melalui penginderaan jarak jauh[12]. Citra satelit diperoleh dari pantulan gelombang elektromagnetik yang berasal dari cahaya matahari dan kemudian dipantulkan oleh permukaan bumi yang kemudian ditangkap oleh sensor elektro-optikal pada satelit[12]. Penggunaan sensor elektro-optikal pada satelit berfungsi untuk menangkap gelombang yang dipantulkan dari sinar matahari ketika mengenai permukaan bumi[12]. Seperti pada Gambar 1.1, setiap permukaan bumi dengan tutupan lahan tertentu akan memiliki panjang gelombang unik. Panjang gelombang yang unik berarti bahwa setiap tipe tutupan lahan tertentu akan memantulkan panjang gelombang yang berbeda dengan tipe tutupan lahan lainnya. Panjang gelombang elektromagnetik inilah yang kemudian diterjemahkan menjadi "warna" pada data citra satelit yang kemudian dapat digunakan untuk menganalisis jenis tutupan pada lahan tersebut.

Gambar 1.2: Segmentasi tutupan lahan menggunakan citra satelit¹

Berdasarkan data citra satelit yang telah dikumpulkan kemudian dilakukan analisis tipe pemanfaatan lahannya dengan menggunakan teknik segmentasi. Segmentasi merupakan sebuah teknik untuk mengelompokkan daerah-daerah pada gambar yang memiliki karakteristik tertentu ke dalam satu kelompok atau kelas tertentu seperti pada Gambar 1.2. Setiap kelompok atau daerah pada gambar dapat merepresentasikan kelas tertentu seperti bangunan, jalan, RTH, lahan pertanian, dan kelas lainnya. Kelas-kelas ini dapat dibedakan berdasarkan warna dan tekstur dominan dari tutupan lahannya. Segmentasi dilakukan untuk mengubah representasi gambar ke dalam bentuk yang lebih sederhana agar dapat dianalisis. Adapun hasil dari proses segmentasi pada data citra satelit akan berupa beberapa set segmen dari seluruh gambar yang akan berkaitan dengan kelas

¹Roger Fong, Power Line Corridor Detection (a YOLO Application), 2018, diakses pada tanggal 9 Desember 2022, https://medium.com/picterra/power-line-corridor-detection-a-yolo-application-f43331c8b5e7

1.2. Rumusan Masalah 3

tertentu.

Pada penelitian ini, digunakan segmentasi berbasis qrid di mana setiap data citra kelurahan yang ingin dianalisis pemanfaatan lahannya dibagi ke dalam qrid-qrid berukuran kecil untuk mendapatkan representasi warna dominan dan tekstur dari pemanfaatan lahan dalam grid. Grid sendiri merupakan sebuah struktur yang berbentuk kotak yang digunakan untuk membagi citra menjadi bagian-bagian berupa sel. Ide dasar dalam penelitian ini adalah dengan memodelkan beberapa warna dominan yang representatif beserta persentasenya, dapat digunakan untuk mewakilkan tipe pemanfaatan lahan tertentu dalam grid. Sedangkan fitur tekstur ditambahkan agar model analisis pemanfaatan lahan dapat lebih mudah dalam mengenali pola-pola dominan apa saja yang terdapat pada tipe pemanfaatan lahan tertentu. Warna dominan pada pemanfaatan lahan diperoleh dengan menggunakan teknik clustering berbasis centroid di mana beberapa centroid, beserta dengan persentase jumlah anggota setiap *cluster*, akan digunakan sebagai warna dominan representatif dari grid tersebut. Kemudian, setelah fitur-fitur warna dominan dan tekstur telah berhasil disiapkan, fitur-fitur ini akan diumpankan ke algoritma klasifikasi untuk selanjutnya dapat dilakukan analisis tipe pemanfaatan lahannya secara otomatis. Setelah dilakukan analisis terhadap tipe pemanfaatan lahan dengan menggunakan model klasifikasi, dilakukan juga perhitungan luas area pemanfaatan lahan berdasarkan tipe pemanfaatan lahan pada masing-masing kelurahan. Kemudian, hasil analisis akan ditampilkan dalam bentuk visualisasi pada perangkat lunak. Adapun tujuan dari pembuatan perangkat lunak adalah agar dapat memberikan informasi mengenai komposisi pemanfaatan lahan di setiap kelurahan beserta luas areanya, serta diharapkan dapat membantu pemerintah dalam mengawasi pemanfaatan lahan dan memperketat perizinan alih fungsi lahan agar tetap sesuai dengan rencana tata ruang dan wilayah (RTRW) yang berlaku.

1.2 Rumusan Masalah

Berikut merupakan rumusan masalah yang muncul berdasarkan deskripsi permasalahan adalah sebagai berikut:

- 1. Bagaimana cara menyiapkan dan memproses data citra satelit dari setiap kelurahan di kota/kabupaten agar dapat dianalisis tipe pemanfaatannya di setiap area tertentu?
- 2. Bagaimana cara mendeteksi tipe pemanfaatan lahan di setiap area tertentu secara otomatis berdasarkan data citra yang telah disiapkan?
- 3. Bagaimana cara menghitung luas area tertentu berdasarkan pemanfaatannya apabila sudah dikenali tipe pemanfaatannya?
- 4. Bagaimana cara menampilkan hasil analisis tipe pemanfaatan lahan, beserta luasnya baik di tingkat kelurahan, kecamatan, kota/kabupaten, atau provinsi di dalam perangkat lunak?

4 Bab 1. Pendahuluan

1.3 Tujuan

Adapun tujuan dari dilakukannya penelitian ini adalah sebagai berikut:

1. Melakukan penyiapan data dengan menggunakan clustering untuk mendapatkan warna dominan dan menggunakan Discrete Wavelet Transform 2D (DWT 2D) beserta Gray Level Co-occuerence Matrix (GLCM) untuk memperoleh tekstur dari data citra satelit kelurahan yang ingin dianalisis tipe pemanfaatan lahan secara otomatis. DWT 2D digunakan untuk ekstraksi fitur tekstur, sementara GLCM digunakan untuk menyederhanakan fitur tekstur agar dapat lebih mudah dianalisis oleh model analisis pemanfaatan lahan.

- 2. Melakukan segmentasi data citra satelit dengan menggunakan algoritma klasifikasi untuk memetakan tipe pemanfaatan lahan secara otomatis, baik di tingkat kelurahan, kecamatan, kota/kabupaten di provinsi tertentu di Indonesia.
- 3. Menghitung luas area dari setiap tipe pemanfaatan lahan baik di tingkat kelurahan, kecamatan, kota/kabupaten di provinsi tertentu di Indonesia.
- 4. Membangun perangkat lunak yang dapat menampilkan hasil analisis tipe pemanfaatan lahan, beserta luasnya ke dalam perangkat lunak.

1.4 Batasan Masalah

Adapun batasan untuk penelitian ini adalah sebagai berikut:

- 1. Penelitian ini berfokus untuk menganalisis pemanfaatan lahan hanya berdasarkan fitur warna dominan dan tekstur.
- 2. Penelitian ini tidak berfokus untuk mencoba algoritma model klasifikasi terbaik yang dapat melakukan segmentasi pemanfaatan lahan mengingat adanya keterbatasan waktu penelitian dan lamanya proses penyiapan data.
- 3. Pada penelitian ini, hanya digunakan algoritma klasifikasi *machine learning* untuk proses segmentasi pemanfaatan lahan berdasarkan citra kelurahan yang ada.
- 4. Pada penelitian ini, proses segmentasi pemanfaatan lahan dan model analisisnya belum dapat diterapkan di lingkungan HDFS dan Spark mengingat bahwa ada keterbatasan proses instalasi *library*.
- 5. Pada penelitian ini juga akan dilakukan perhitungan luas tutupan wilayah berdasarkan jenis tipe pemanfaatan lahannya dan perhitungan dilakukan dengan teknik *grid based*.
- 6. Pada penelitian ini, deteksi pemanfaatan lahan dan perhitungan luas hanya dilakukan di tingkat kelurahan, kecamatan, kota/kabupaten, dan provinsi.
- 7. Pada penelitian ini, tidak berfokus kepada arsitektur pembangunan, framework, dan library perangkat lunak untuk UI.

1.5. Metodologi 5

1.5 Metodologi

Metodologi yang digunakan dalam pembuatan skripsi ini adalah sebagai berikut:

- 1. Mendefinisikan studi kasus yang ingin diselesaikan;
- 2. Melakukan eksplorasi dan studi literatur terkait dengan *library* untuk pengolahan data citra dengan bahasa pemrograman Python;
- 3. Melakukan eksplorasi dan studi literatur terkait segmentasi citra;
- 4. Melakukan studi literatur terkait dengan peraturan zonasi wilayah yang telah ditetapkan oleh pemerintah untuk menentukan tipe pemanfaatan lahan;
- 5. Melakukan eksplorasi data dan penyiapan data;
- 6. Menentukan tipe pemanfaatan lahan berdasarkan kelas-kelas pemanfaatan lahan yang telah ditetapkan dalam Peraturan Menteri PUPR dan berdasarkan hasil eksplorasi data;
- 7. Melakukan transformasi data;
- 8. Melakukan proses segmentasi pemanfaatan lahan berdasarkan citra kelurahan berbasis qrid;
- 9. Melakukan analisis tipe pemanfaatan lahan dengan menggunakan fitur warna dominan dan tekstur:
- 10. Melakukan *clustering* dengan K-*Means* untuk memperoleh fitur warna dominan;
- 11. Melakukan Discrete Wavelet Transform 2D dan Gray Level Co-Occurence Matrix untuk memperoleh fitur tekstur;
- 12. Melakukan *tuning hyperparameter* model klasifikasi untuk analisis pemanfaatan lahan di wilayah kelurahan;
- 13. Melakukan evaluasi terhadap model segmentasi untuk mendeteksi tipe pemanfaatan lahan;
- 14. Melakukan analisis untuk menghitung luas pemanfaatan lahan berdasarkan tipe pemanfaatan lahannya;
- 15. Membangun rancangan perangkat lunak yang dapat memvisualisasikan hasil analisis tipe pemanfaatan lahan dan perhitungan luasnya berdasarkan data citra satelit di tingkat kelurahan, kecamatan, kota/kabupaten, dan provinsi;
- 16. Membuat perangkat lunak yang dapat memvisualisasikan hasil analisis tipe pemanfaatan lahan dan perhitungan luasnya berdasarkan data citra satelit di tingkat kelurahan, kecamatan, kota/kabupaten, dan provinsi;
- 17. Menulis dokumen skripsi.

1.6 Sistematika Pembahasan

Adapun laporan penelitian ini tersusun secara sitematis ke dalam enam bab antara lain adalah sebagai berikut:

1. Bab 1: Pendahuluan

Pada Bab Pendahuluan membahas tentang gambaran umum permasalahan yang ingin diselesaikan pada penelitian, rumusan masalah yang ingin diselesaikan, tujuan dilakukannya penelitan ini, mendefinisikan ruang lingkup batasan ruang lingkup dari penelitian, serta tahapan-tahapan yang dilakukan pada penelitian ini.

6 Bab 1. Pendahuluan

2. Bab 2: Landasan Teori

Pada Bab Landasan Teori membahas mengenai hasil studi literatur yang dilakukan sebagai dasar teori yang digunakan dalam penelitian ini. Pada bab ini, dibahas mengenai klasifikasi tipe pemanfaatan lahan menurut Permen PUPR Nomor 20 Tahun 2011, teori mengenai image processing, citra satelit, model warna yang akan dipakai di penelitian ini, teori big data, Hadoop, Spark, algoritma klasifikasi dan algoritma clustering untuk analisis pemanfaatan lahan dan penyiapan data. Pada bab ini, juga dibahas mengenai fitur tekstur yang digunakan pada penelitian ini, teknik visualisasi data yang paling cocok untuk digunakan untuk pembangunan UI pada penelitian ini.

- 3. Bab 3: Eksplorasi Data, Teknologi, dan Pemodelan Tahap Awal Pada Bab Eksplorasi Data, Teknologi, dan Pemodelan Tahap Awal membahas mengenai keterbatasan yang ada pada data yang sudah dikumpulkan di penelitian sebelumnya, eksplorasi teknologi, pembuatan program Labeling Image untuk pembuatan dataset training untuk model klasifikasi, dan pemodelan permasalahan pada tahap awal dengan menggunakan dataset kecil.
- 4. Bab 4: Pengumpulan, Penyiapan Data, dan Evaluasi Pemodelan Pada Bab Pengumpulan, Penyiapan Data, dan Evaluasi Pemodelan membahas mengenai pengumpulan data yang dilakukan sebagai solusi untuk mengatasi keterbatasan yang ada pada data di penelitian sebelumnya, tahapan penyiapan data yang perlu dilakukan sebelum melakukan analisis pemanfaatan lahan dengan menggunakan model klasifikasi, dan membahas mengenai hasil evaluasi model klasifikasi untuk analisis pemanfaatan lahan secara otomatis.
- 5. Bab 5: Perancangan Perangkat Lunak, Data Warehouse, dan Implementasinya Pada Bab Perancangan Perangkat Lunak, Data Warehouse, dan Implementasinya membahas mengenai perancangan perangkat lunak untuk menampilkan visualisasi hasil analisis tipe pemanfaatan lahan beserta perhitungan luasnya, jenis visualisasi yang tepat, kebutuhan input untuk user interface pengguna, beserta perancangan data warehouse untuk kebutuhan visualisasi hasil analisis pemanfaatan lahan ke dalam perangkat lunak.
- 6. Bab 6: Kesimpulan dan Saran Pada Bab Kesimpulan dan Saran membahas mengenai kesimpulan yang didapatkan setelah melakukan penelitian, serta saran untuk penelitian serupa selanjutnya.