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CHAPTER 5 CONCLUSION AND 

RECOMMENDATION 

 

5.1 Conclusion 

Three different types of wave propagation have been simulated in the framework 

of 1D SWE using the Preissmann implicit scheme. Based on those simulation 

results, it can be concluded that: 

1. The Preissmann implicit scheme has successfully solved the SWE, proven 

by the numerical result of all simulations although there is still inaccuracy 

in the solitary wave case due to the absence of the non-hydrostatic term. 

2. For tidal wave simulation, of which the dispersion effect is negligible, the 

numerical Preissmann implicit scheme was proven to be robust and 

accurate in predicting both water elevation and velocity. 

3. In the scope of modeling the periodic permanent roll wave, where the 

dispersion effect might be argued to play a considerable role, the result 

from numerical model is still in agreement although the Preissmann 

implicit scheme overestimated the wave peak. 

4. For the solitary wave simulation, both the wave peak and the occurrence 

positions were underestimated by the Preissmann implicit scheme. The 

greater the amplitude, the greater the dispersion effect, thus, the numerical 

model became less accurate. 
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5.2 Recommendation 

The recommendations for the future study are: 

1. There are still inaccuracies, particularly for the simulation of solitary waves, 

in which the dispersion effect is relatively large, therefore, the addition of 

non-hydrostatic term into the numerical Preissmann scheme becomes 

necessary in the future study. By adding the non-hydrostatic term, the 

vertical velocity distribution is no longer uniform, and the dispersion effect 

is taken into account, thus, the result from numerical model becomes more 

accurate and in accordance with the analytical result. 

2. For the periodic roll waves, it would be interesting to investigate the 

simulation using SWE model with Preissmann scheme including the 

turbulence terms. 
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