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CHAPTER 5  

CONCLUSIONS 

Based on the results carried out in this study, several conclusions can be made as 

follows: 

1. The use of smaller grid sizes in hydraulic simulations increases the accuracy 

and vice versa. However, the use of smaller grid sizes increases the 

computational cost exponentially. 

2. The exponential increase of the computational cost is due to the exponential 

increase of the total number of cells, as the computational domain is of 2D 

area. 

3. The grid size of 30 m was found to be the cost-effective size for the 

hydraulic computations using the ALOS with GVUF and MERIT-Hydro 

with both GVUF and RVUF. The grid size of 50 m was found to be the cost-

effective size for the hydraulic computations using MERIT-Hydro with 

GVUF. These grid sizes were found effective because their computational 

cost can be reduced more significantly compared with the decrease of the 

total number of cells. 

4. For the hydraulic computations using ALOS and MERIT-Hydro, the 

optimum grid size was found to be 30 m based on the cost effectiveness and 

the accuracy of the results. Using the 30 m grid size, the computational cost 

reduced significantly without significantly reducing accuracy of the results.
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