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CHAPTER 5  

CONCLUSIONS 

 

This study highlighted a comparison between the Diffusive and Fully-Dynamic 

SWE for the tsunami modeling using the freeware HEC-RAS 6.1. Based on the 

results and findings of this study, some conclusions can be drawn as follows: 

1. HEC-RAS 6.1 is in general capable of performing the tsunami simulation 

and successfully produced stable numerical results for all grid sizes using 

both Diffusive and Fully-Dynamic SWE. 

2. Indeed, the results still deviate from the benchmark data for both equations 

in some scopes. The inaccuracy can specifically be seen in the wave arrival 

time with the detected delay of up to 20 minutes. 

3. The inaccuracy of the results is possibly caused by the sub-grid approach 

method used in HEC-RAS 6.1 in calculating the mesh, by which this 

approach may not be suitable for tsunami simulations. Thus, it is suggested 

to use another numerical approach (non-sub-grid approach) in order to 

achieve model accuracy in modeling tsunami cases. 

4. The most significant difference between the two equations can be seen in 

the velocity propagation from the boundary condition line to the coast. The 

maximum velocity is mainly concentrated behind the breakwater using the 

Fully-Dynamic SWE, whereas with the Diffusive SWE it is concentrated at 

the harbor entrance. 

5. Implementing the smaller grid size on the model changes the results 

insignificantly but increases the computational cost exponentially. Hence, 

choosing the right grid is critical regarding time efficiency. 
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