BAB 5
KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian yang sudah dilakukan dapat disimpulkan bahwa :

1. Kabel NYM $2 \times 1.5 \ mm^2$ SNI memiliki ukuran luas penampang kawat $1.48 \pm 0.02 \ mm^2$, ukuran luas penampang tersebut sesuai dengan yang telah ditetapkan oleh SNI, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI memiliki ukuran luas penampang kawat $1.13 \ mm^2$ dan $0.49 \ mm^2$, ukuran luas penampang tersebut 24% dan 47% lebih kecil dari ukuran yang telah ditetapkan oleh SNI.

2. Kabel NYM $2 \times 1.5 \ mm^2$ SNI memiliki ukuran diameter kabel sekitar $8.62 \ mm$, ukuran diameter tersebut sesuai dengan yang telah ditetapkan oleh SNI, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI memiliki ukuran diameter sekitar $8.19 \ mm$ dan $7.61 \ mm$, ukuran diameter kabel tersebut 5% dan 12% lebih kecil dari ukuran yang telah ditetapkan oleh SNI.

3. Kabel NYM $2 \times 1.5 \ mm^2$ SNI memiliki kawat yang terbuat dari bahan tembaga yang sesuai dengan yang telah ditetapkan oleh SNI, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI memiliki kawat yang terbuat dari campuran antara bahan tembaga dan aluminium.

4. Kabel NYM $2 \times 1.5 \ mm^2$ SNI memiliki massa sekitar $123.94 \ kg/km$, massa tersebut 5% lebih besar dari massa yang telah ditetapkan oleh SNI, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI memiliki massa sekitar $101.20 \ kg/km$ dan $90.97 \ kg/km$, massa tersebut 14% dan 23% lebih kecil dari massa yang telah ditetapkan oleh SNI.

5. Kabel NYM $2 \times 1.5 \ mm^2$ SNI yang terbuat dari bahan tembaga lebih kuat dibandingkan dengan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI yang terbuat dari campuran bahan tembaga dan aluminium. Kabel NYM $2 \times 1.5 \ mm^2$ SNI memiliki jarak simpangan sekitar $2.3 \ cm$ saat diberi beban $500 \ g$, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ memiliki jarak simpangan sekitar $3.6 \ cm$.

6. Kabel NYM $2 \times 1.5 \ mm^2$ SNI saat menghantarkan arus listrik $25 \ A$ menunjukkan kenaikan suhu sekitar $3^\circ C$, sedangkan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI saat menghantarkan arus listrik $25 \ A$ menunjukkan kenaikan suhu sekitar $12^\circ C$ dan ada kabel NYM $2 \times 1.5 mm^2$ non-SNI yang hanya mampu menghantarkan arus listrik $14 \ A$ karena sudah menunjukkan kenaikan suhu lebih dari $15^\circ C$.

Pada penelitian ini sudah dapat membuktikan bahwa kabel NYM $2 \times 1.5 \ mm^2$ SNI dan kabel NYM $2 \times 1.5 \ mm^2$ non-SNI memiliki perbedaan dalam hal ukuran luas penampang kawat, ukuran diameter kabel, jenis bahan kawat, massa kabel, kekuatan kabel dan kemampuan menghantarkan arus. Namun pada penelitian ini belum dapat menampilkan hasil kemampuan menghantarkan arus maksimal pada kabel NYM $2 \times 1.5 \ mm^2$ SNI. Hal ini dikarenakan terbatasnya sumber daya alat yang dapat digunakan sehingga tidak dapat menghasilkan nilai arus yang lebih tinggi lagi untuk mengetahui kemampuan menghantarkan arus maksimal pada kabel-kabel tersebut.
Ukuran luas penampang dan jenis bahan kawat jelas mempengaruhi kualitas dari sebuah kabel. Pada hal ini dapat dilihat bahwa kabel SNI yang memiliki ukuran luas penampang kawat, diameter kabel, jenis bahan dan massa kabel yang sesuai dengan yang telah ditetapkan oleh SNI terbukti lebih kuat dibandingkan dengan kabel non-SNI dalam menahan beban. Semakin kuat kabel tersebut maka semakin kaku dan sulit untuk membengkok sehingga lebih terjamin keamanannya, karena jika terjadi pembengkok pada kabel dapat mengakibatkan pemanasan pada kabel dan terputusnya kabel tersebut, hal ini yang kemudian dapat menimbulkan kebakaran. Selain kekuatan fisik dalam menahan beban, kabel SNI yang memiliki ukuran luas penampang kawat, diameter kabel, jenis bahan dan massa kabel yang sesuai dengan yang telah ditetapkan oleh SNI juga berpengaruh dalam segi kemampuan menghantarkan arus listrik. Hal ini dapat dilihat bahwa kabel NYM $2 \times 1,5 \, mm^2$ SNI saat menghantarkan arus listrik sekitar 25 A menunjukkan kenaikan suhu sekitar 3°C. Hal ini menunjukkan bahwa kemampuan menghantarkan arus listrik kabel NYM $2 \times 1,5 \, mm^2$ SNI lebih baik dibandingkan kabel NYM $2 \times 1,5 \, mm^2$ non-SNI dan telah sesuai dengan yang ditetapkan oleh SNI. Kemudian kabel NYM $2 \times 1,5 \, mm^2$ non-SNI saat menghantarkan arus listrik sekitar 25 A menunjukkan kenaikan suhu sekitar 12°C dan ada pula kabel NYM $2 \times 1,5 mm^2$ non-SNI yang hanya mampu menghantarkan arus listrik sekitar 14 A karena sudah menunjukkan kenaikan suhu lebih dari 15°C.

Berdasarkan penelitian yang telah dilakukan, kabel NYM $2 \times 1,5 \, mm^2$ SNI telah memenuhi semua standar yang telah ditetapkan dalam SNI sehingga dalam menghantarkan listrik kabel tersebut dapat menghantarkan arus lebih besar dibandingkan kabel NYM $2 \times 1,5 \, mm^2$ non-SNI yang belum sesuai dengan standar yang telah ditetapkan dalam SNI. Hal ini menunjukkan bahwa kabel SNI memiliki tingkat keamanan yang lebih terjamin dibandingkan kabel non-SNI. Namun bukan berarti bahwa kabel non-SNI tidak boleh digunakan, hanya saja perlu diperhatikan dalam penggunaannya. Misalnya untuk pemakaian yang menggunakan arus listrik dibawah 10 A, kabel NYM $2 \times 1,5 \, mm^2$ non-SNI masih dapat digunakan. Untuk menjamin keamanan disarankan agar menggunakan kabel NYM $2 \times 1,5 \, mm^2$ SNI karena telah terbukti sesuai dengan yang ditetapkan oleh SNI.

5.2 Saran

Pengambilan data untuk mendapatkan luas penampang dengan cara mengukur diameter kabel sedapat mungkin diukur pada lima titik atau lebih, hal ini untuk mendapatkan data ukuran diameter yang lebih presisi. Pengambilan data pada saat menentukan massa jenis bahan sedapat mungkin diukur dengan alat ukur khusus massa jenis namun jika tidak ada, dapat diukur dengan mengukur massa dan volumenya.
DAFTAR REFERENSI

